微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹13闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹
首页 > 研发问答 > 微波和射频技术 > 天线设计和射频技术 > ca3189 am receiver circuits

ca3189 am receiver circuits

时间:04-12 整理:3721RD 点击:
The Microchip rfrxd0420 superheterodyne receiver datasheet
(ww1.microchip.com/downloads/en/DeviceDoc/70090a.pdf) shows a 10.7MHz ceramic discriminator needed for FSK demodulation of signal. As I read, a discriminator is essentially a resonator.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...



Can I use a standard crystal in parallel with a resistor in place of the discriminator? Is there a difference between a crystal and a ceramic discriminator (eg bandwidth) ?

For FM demodulation you need 75kHz bandwidth. Ordinary crystal is too much narrow. Ceramic discriminator is designed for needed bandwidth and you can preciselly tune it. It is actually paralel resonance circuit.

But I can reduce the Q and widen the bandwidth with a parallel resistor. Am I wrong?

These types of discriminators use the delay and multiply method. The ceramic resonator forms a one pole band pass filter with delay in the center frequency. Whatever method you use, you must have relatively constant delay across the signal bandwidth or there will be severe distortion. If you do not want to use a ceramic resonator, your next best choice is a LC tank circuit which will have labor cost of tuning each unit. This may not be a problem on a system which is not manufactured in large quantities.

Usefull bandwidth with crystal is limited to few hundred Hz. For linear demodulation at 75 kHz bandwidth and more using LC tank circuit you may look at datasheet for CA3189. It is an old FM IF discriminator but uses the same demodulation principle. There is an example of double tuned tank circuit for low distortion which might give you an idea how to realize it. Using single tank circuit and reducing it's Q for greater bandwidth leads to reduced sensitivity of discriminator.

Thank you for the answers.

Actually linearity is not important, because it is an FSK not an FM demodulation. I could use LC tank as well, but I wanted to design the receiver with no tuning needed at all. Unfortunately I don't find a source for a 10.7MHz discriminator, so I have to experiment with finding out the parameters for a suitable tunable coil or tune the capacitor in the LC. But the capacity range needed is too large, 0-60 pF, I can realize it only with a fixed-value chip cap in parallel with a tunable one.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top