微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 半导体技术创新应用 家用电器低碳化技术

半导体技术创新应用 家用电器低碳化技术

时间:06-13 来源:互联网 点击:

半导体器件的发明和应用深刻地改变了近50年的人类历史发展进程。进入21世纪,半导体器件无处不在,已成为构筑信息化社会的基石。同时,电力半导体在提高电力转换效率方面的作用使之成为构筑低碳社会的基石。半导体技术的节能效果是显而易见的。世界首台采用电子管的电子计算机ENIAC重达30吨,耗电量高达200kW,而如今具有同样功能的半导体计算设备重量仅为几克,耗电量不足1W。同时,电力半导体在太阳能光伏和风力发电装置的电能转换、储存、输送过程中发挥着关键性作用。可见,可再生能源利用和能源转换装置效率的提高都离不开半导体技术的创新应用。

硅(Si)器件经历了多年的发展已经改变了家用电器的面貌,直流调速技术已经成为家用空调以及其他电机提高效率的主要技术措施。值得关注的是,碳化硅(SiC)、氮化镓(GaN)和氧化镓(Ga2O3)等新型器件的技术发展,除可通过减少器件能耗提高电力转换效率之外,将在缩小外形尺寸、提高耐热性能等方面促进家用电器技术发展。

提高能源利用效率是一个含义广泛的课题。就家用电器而言,狭义的提高效率主要是提高家用电器在运行过程中的能源利用效率。目前,各国基本已对家用电器的能源利用效率展开监管,能效标签、能效等级制度是较为常见的监管方式。而广义的提高效率还需要考虑制造过程的能源消耗、原材料能耗、运行过程中间接的能效影响。本文讨论的效率问题仅限于狭义范围,且只针对利用技术进步实现能源利用效率提高的措施,并将着重阐述电力半导体对提高家用电器能源利用效率的作用。

 电力半导体的材料替代

家庭用电约占美国社会总用电量的1/3。据预测,未来10年,美国家庭数量将增长11%,而得益于电力半导体技术,美国家庭用电量将仅增加6%。有调查报告指出: 美国所有电力应用中的6%~10%是电源从交流(AC)转换为直流(DC),由于现有电源效率欠佳,美国电力总消耗的3%~4%是在电源内部消耗的;以改进产品设计、使用微电子控制器件以及场效应管(FET)和二极管等电力半导体来提高电源效率,可以节省美国电力总消耗的1%~2%。这意味着电力半导体技术具有每年节省30亿~60亿美元的潜能。

如今,电力半导体技术的发展不仅体现在应用日益广泛的高效率LED照明器具上,即使在空调、冰箱、洗衣机、电磁灶等大功率家电领域,电力半导体的应用也已超出控制器驱动电源的范围。大功率电力半导体驱动技术改变了产品原有的运行方式和能量转换过程,节能效果显著。提高家用电器的电源转换效率和降低待机能耗是目前普遍采用的节能措施。半导体制造企业、电力转换部件制造企业以及家用电器整机制造企业正在努力使这些损耗变得更小。

电机是多数白色家电的主要耗电部件,虽然调速控制和变扭矩控制技术在提高电机效率方面的作用早已为人所知,并在工业领域得到广泛应用,但是在电力半导体出现前,这些技术难以应用于结构紧凑、维护相对不便的家用电器中。例如,具有调速功能的直流电机在配备半导体换向器之前,使用的是机械换向器,而机械换向器的寿命通常不足1000h,并使得驱动电源体积庞大、价格高昂。20世纪70年代末,日本企业将电力半导体技术应用于空调制冷压缩机的调速控制,基本实现整机10万h免维修,同时令驱动电源的外形尺寸大大缩小,可放置于空调内部,且价格大幅降低。日本市场在不到10年的时间内基本完成了从定转速到变频调速的转变。虽然变频电源消耗了约10%的电能,但是利用变频调速在运行过程中的变速、变扭矩功能,可使住宅空调电力消耗平均降低约30%。同时,在冬季热泵运行模式下具备大幅度提高制热量的能力,这也促进了热泵供热技术的广泛应用。

在变频器和变压器等装置中起开关作用的电力半导体,如金属氧化物半导体场效应晶体管(MOSFET)、绝缘栅极型双极晶体管(IGBT)和二极管等的技术发展趋势是,从目前主流的Si半导体材料向SiC和GaN等化合物半导体材料转变,在提高效率和减少体积方面取得重大进步。

德国弗劳恩霍夫(Fraunhofer)应用研究促进协会太阳能系统研究所(ISE)目前已经将太阳能光伏发电装置配套的逆变器效率提高到98.5%,新逆变器的功率损失比该机构原有同类逆变器下降了50%左右。该机构在额定功率为5kW的单相逆变器上采用SiC器件替代Si器件,成为效率显著提高的关键。这些SiC器件由美国科锐(Cree)公司生产,该公司在2010年已经解决了直径6英寸SiC底板的制造工艺问题,并实现批量生产,为SiC器件制造成本的大幅下降创造了条件。

新型半导体器件的较高效率提升主要是因为器件内部功耗较低。在相同的电路结构下,将二极管从Si材料换成SiC材料,功耗可降低约30%;如果同时替换晶体管,功耗可降低约50%。功耗降低,发热量也随之下降,从而实现电力转换器件的节能化。

除功耗低外,GaN和SiC还具备适于小型化的特性。首先,以上述两种材料制成的器件能够实现数倍于Si元件的高速开关,使得电感器等外围电路部件的尺寸大幅下降,从而实现电力转换装置电路的小型化。其次,SiC和GaN元件还可在Si元件无法适应的200℃以上的高温环境下工作,在发热量相同的情况下,能够减小电力转换器件冷却装置的外形尺寸。

随着GaN和SiC电力半导体产业化步伐的加快,开发充分利用其特性的新型外围电路成为当务之急,例如可实现高速工作的驱动电路设计、以高频开关为前提的电磁噪声对策等。要使这些电力半导体在超过200℃的高温环境下工作,除了采用耐热性高且低价位的焊锡材料,在芯片安装方面,还需采用耐高温的封装材料。这些外围电路技术的进步,是发挥GaN和SiC器件效力的关键。
碳化硅器件产业化

2010年10月,日本三菱电机公司宣布于2011冷冻年度开始销售采用SiC制造的肖特基势垒二极管(SBD)作为直流调速压缩机驱动电源的家用空调。这是世界上首件应用SiC电力半导体的家用电器,标志着家用电器行业以SiC为代表的新一代电力半导体产业化的开始。

首批采用SiC器件的家用空调是三菱电机雾峰Move Eye系列产品,包括额定制冷量为2.8kW的MSZ-ZW281S以及额定制冷量为3.6kW的MSZ-ZW361S两个型号。按照计划,雾峰Move Eye系列将覆盖额定制冷量2.2kW~7.1kW的范围,其他型号产品将陆续以SiC器件替代Si器件。虽然目前SiC器件的价格仍然较高,但是三菱电机并未将成本变化反映在整机价格上,而是以让利方式自行消化了增加的成本。

据三菱电机公司介绍,这批空调仍使用绝缘栅极型双极晶体管(IGBT),将Si二极管改为SiC-SBD,仅用于直流调速压缩机驱动电源。从节能角度来说,采用SiC-SBD,压缩机驱动电源的电能转换损失可减少约60%,空调整机耗电量约减少2%。如果需要进一步提高电能转换效率及缩小驱动电源外形尺寸,还需将其他电力半导体全部改为SiC器件,实现以SiC MOSFET取代IGBT。三菱电机此举旨在促进SiC市场加速发展,使SiC器件的价格尽快进入合理区间,同时力争在2013~2014年实现SiC MOSFET的产业化目标,从而在电力半导体市场取得竞争优势。三菱电机计划将IGBT全部替换为SiC MOSFET,SiC器件将不仅应用于压缩机驱动电源,还将应用在主控制板的电源部分。如果全部采用SiC器件,主控制板的电力电子模块部分的外形尺寸将减为目前的50%左右。

三菱电机曾发布过一系列针对采用全SiC电力转换器件的节能前景验证结果。利用SiC-SBD和SiC MOSFET试制的输出功率为11kW的电机变频器,与三菱电机采用Si器件制造的同类整机相比,功耗约减少70%。同时,试制的SiC变频器的体积小于Si变频器,采用SiC器件的整机体积只有利用Si器件整机的1/4左右。此外,三菱电机试制的输出功率为3.7kW的SiC电机变频器的功耗比Si电机变频器下降约54%。

验证结果显示,输出功率为20kW的SiC电机变频器的节能效果更为显著。额定输出功率为20kW、开关频率为20kHz的SiC电机变频器,与采用普通Si制成的IGBT同类产品相比,功耗减少约90%。据介绍,这是通过缩短开关时间实现SiC器件开关速度的提升,从而降低功耗。为了加快开关速度,栅极驱动电路需实现高速化,改进驱动方式,降低驱动电路中的寄生电感,从而将开关时间缩短为50%左右。同时,提高开关速度可能导致浪涌电压增大,从而损坏SiC器件。为了避免这一问题,新产品通过改进SiC器件的配置和电路布线,减少了电路中的寄生电感以抑制浪涌电压。与输出功率为20kW的Si电机变频器相比,SiC电机变频器的寄生电感仅为前者的1/5~1/10。

2011年2月,三菱电机宣布成功开发出晶体管和二极管均采用SiC的电力半导体器件——"全SiC"智能功率模块(IPM)。除了采用SiC器件,IPM还将过电流保护电路与驱动电路一起内置在模块中。一般情况下,在功率元件中很难做到既提高电流密度又降低损失,而由于采用SiC功率元件,IPM可以实现这种双赢。与采用Si器件构成的IGBT相比,新模块的电流密度提高了约3倍,同时逆变器功耗降低约70%。此外,新模块的体积约为原同类模块的一半。

日本电力中央研究所成功试制出采用SiC二极管、用于分布式电源系统连接的逆变器。该逆变器的额定输出功率为3.3kW,输出电压为单相200V,转换效率高达96.4%,是目前同类电力电子转换装置中电能转换效率最高的产品,主要用于家用太阳能发电系统和燃料电池系统等的功率调节。该逆变器由调节直流电压的斩波器和将直流转换成交流的单相逆变器构成,并通过降低斩波器电路上二极管的恢复电流,实现高转换效率。与原来采用Si二极管的最高性能产品相比,该逆变器的电力损失减少了15%;通过提高斩波器电路的开关频率,装置体积缩小了15%。
氮化镓即将实现产业化

近年来,GaN电力半导体的研发日益活跃。与采用Si电力半导体相比,GaN电力半导体应用于逆变器、转换器等的电力转换装置,可大幅提高效率,并实现小型化。富士通研究所与古河电气工业等组成的企业集团、美国IR公司、日本三垦公司、NEC与NEC电子组成的企业集团以及松下公司均已着手研发该类产品。

目前,GaN电力半导体研发的焦点之一是底板的选择。GaN底板有助于提高GaN电力半导体的电气特性,但价格较高。为了控制成本,越来越多的厂商选择采用Si底板和SiC底板等特殊底板。GaN电力半导体之所以能够提前进入产业化阶段,是因为在降低制造成本和改善特性方面取得进展。降低成本的关键在于使用Si底板和SiC底板等比GaN底板价格便宜的新型底板。在GaN底板上制造GaN电力半导体,虽然能够获得很好的电气性能,但是GaN底板的价格约为Si底板的100倍。另外,GaN晶圆的直径只有2英寸,难以降低制造成本。

除Si底板外,还可以采用SiC底板低成本制造GaN电力半导体,可利用的最大直径为4英寸。日本富士通公司研究显示,考虑到元件的成品率等因素,采用SiC底板制造GaN电力半导体可能比使用Si底板成本更低。

一般而言,使GaN半导体在Si底板和SiC底板等异种底板上生长结晶并不容易。因为上述底板的线膨张系数及晶格常数等与GaN不同,容易产生结晶缺陷。富士通研究所指出,在异种底板和GaN半导体之间设置缓冲层可以解决这一问题。事实上,其他公司已用过类似方法,如采用Si底板制造LED产品。

2006年,松下公司宣布成功开发出采用GaN半导体的晶体管,计划用于通用逆变器电路和电源电路等使用大功率开关的元件。该晶体管的元件面积仅为原有同类产品的1/8,而结构改进可令导通电阻降为原有同类产品的1/3左右。2010年,松下公司发布了在单芯片上集成6个元件的Si底板产品。与采用其他元件构成的逆变器相比,该产品可实现逆变器小型化,并降低寄生电感。事实上,寄生电感越小,越有利于实现高速开关。与采用硅制IGBT构成的逆变器进行电力损失对比,在输出功率为20W时,该产品可使电力损耗减少约42%。

日本碍子公司宣布成功开发出可将LED光源的发光效率提高1倍的GaN底板。利用这种新型GaN底板制造的LED元件的内部量子效率提高了1倍以上,可使发光效率达到现有LED光源的2倍(200lm/W)。这意味着在耗电量降低50%的同时大幅减少发热量,从而实现照明器具的长寿命及小型化。此项技术也可应用于混合动力车和电动汽车的电力半导体以及无线通信基站的功率放大器等产品。

与此同时,日本三菱化学公司计划于2012年10月开始大批量生产用于LED的GaN底板。由于具有较高的电能转换率,采用GaN底板的LED灯具的耗电量可比现有产品降低50%~70%。与现有采用蓝宝石底板的同类产品相比,GaN底板虽然具有电力损耗较低等优点,但是存在制造成本偏高的问题。目前三菱化学公司已开发出新的生产工艺流程,计划于2015年将GaN底板的制造成本降低为目前的1/10。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top