单周期控制Boost DC/DC变换器分析与设计
图3(a)所示.
式(9)可以通过图4(a)的复位积分电路来实现。其中U+=Um,U1=-RSiL,U-=-UmD,时间常数RC1等于RS触发器时钟Clock的周期时间TS。图4(b)为占空比D的示意图,当U-减小到U+时,积分结束。
3 仿真分析
根据前面的论述,可以构建出双环单周期控制Boost电路,如图5所示。为了验证其可行性以及更加明确系统各模块之问的关系,本文采用Saber软件进行了仿真分析,仿真参数如下:
输入电压 Ui=110V;
开关频率 fs=100kHz:
输出电压 U0=300V;
输出功率 P0=300W。
图6为仿真结果,图6(a)为比较器输入端电压U-、U+以及输出RS触发器复位脉冲信号R的局部展开波形;图6(b)为RS触发器PWM信号产生波形;图6(c)为输出电压U0以及电感电流波形。
仿真结果表明,双环单周期控制策略是可行的,复位积分电路各模块之间能按设计的逻辑工作,输出电压稳定在300V。
4 实验验证
4.1 实验样机设计
图5中虚线框中的控制电路可以用新型芯片IRll50S来实现,如图7所示。lRll50S是一种工作于连续模式的基于单周期控制技术的控制芯片,具有过压保护、欠压保护、空载保护、峰值电流控制以及软启动功能。该芯片只有8个引脚,采用S0-8封装,有很强的驱动能力,最大驱动电流达到1.5A,频率设定只需通过一个电阻R2来调节,整个控制系统十分简单。
本文应用该芯片设计了一台原理样机,实验主要参数为:输入电压80~250V,Boost电感780μH,工作频率f=100kHz,输出电压U0=300V,过压保护电压360V,额定功率300W,采样电阻O.1Ω,输出滤波电容:330μF/450V。
4.2 实验结果及分析
从图8和图9可以看出,随着输入电压增加,占空比逐渐减小,输入电流减小,检测电阻端电压(负压)也减小,从而误差放大器的输出Um也减小。
图10和图l1表明,随着输入电压的增加,输出电压稳定在300V。
图12是该变换器的空载损耗曲线图,可以看出,随着输入电压的增加,输入电流减小,损耗逐渐减小,当输入电压达到180V后,损耗基本稳定在0.51W。
随着输入电压的增加,系统的效率逐渐增加,主要是由于输入电流的减小,系统的损耗有所减小。满载情况下,输入电压为220V时效率最高,达到了97.9%。
5 结语
本文介绍了单周期控制技术的基本原理,研究了单周期控制Boost变换器的一种双环控制方案,应用仿真分析证实了其可行性,并应用基于单周期控制技术的芯片IRll50S设计制作了一台实验样机。实验证明,采用这种控制方案的Boost变换器工作稳定,整机效率高,系统具有良好的性能。
- 简析BOOST-BUCK变换器(11-27)
- 基于L6562的高功率因数boost电路的设计(01-06)
- 一种新型无源无损软开关Boost变换器(06-05)
- 负电压DC/DC开关电源的设计(10-25)
- Turbo-boost充电器可为CPU涡轮加速模式提供支持(06-20)
- 基于全陶瓷电容的112W长串LED boost驱动器方案(08-20)