免调节中频VCO: 第二部分: 新型IC简化设计
绝缘体-金属(MIM) RF电容、精密的细薄膜电阻和三层金属。
这种器件的完全互补使用才能实现完整的IC。VCO设计需要仔细和大量的计算机仿真,还包括为了不同方面的性能而进行的多次反复设计,这样才能确保在所有的工作条件下满足所有的规范和要求。
最后,为保证振荡器具有足够的频率调谐范围以补偿由元件公差造成的工作频率漂移,Maxim选择进行产品测试并得出一组可靠的频率极限数据。这些极限频率给MAX2605-MAX2609用户提供了一组可靠的最高和最低调谐频率值(fMAX和fMIN),通过检测的IC在调谐电压(VTUNE)为0.4V时的振荡频率(fOSC) ≤ fMIN ,VTUNE = 2.4V时fOSC ≤ fMAX 。假设外部电感具有±2%的误差,包括温度漂移和很小的设计中心误差(<0.5%),这一测试结果说明不用调节外部电感值VCO也可以保证调谐到由电感确定的工作电压。最终的结果即实现了无需微调的VCO设计。
MAX2605-MAX2609的应用非常简单和容易理解,只包括两个很简单的步骤:
1.选择并安装外部电感设置预期的振荡频率。
2.对输出级负载进行电阻或电抗匹配(图4)。

图4. 这幅简单的原理图给出了MAX2605-MAX2609 VCO IC的典型应用。
VCO的额定工作频率(fNOM)由IND (pin 1)的外部电感值唯一确定,如下面的曲线所示(图5)。

图5. 本图为MAX2607 VCO IC的预期振荡频率与所需的总调谐电感值(LF)的函数关系(150MHz至300MHz)。
为实现预期的工作频率选择的电感值(LF)不需与表贴电感元件的标准值保持一致,表贴元件标准值的变化台阶一般以大约1.2的因数增大。在这种情况下为了得到想要的电感值,必需用两个电感实现:LF1和LF2。LF1是小于且最接近预期值的标准值。LF2是小于LF - LF1并且最接近它的标准值。LF1应该符合最小的Q值要求,而LF2可以使用成本较低的薄膜SMT型元件实现。由于它的值占总值的20%还要少,所以其较低的Q值对总Q值的影响很小。
还可以使用PCB导线实现小电感以调节总电感值。对于MAX2608/MAX2609电路来说,使用PCB上与地短接的导线实现LF2比用SMT元件具有更精确的电感值。一旦在IND引脚实现了所需的电感值,VCO一定可以在所有的元件误差、工作温度和供电电压范围内调谐到其振荡频率。
MAX2605-MAX2609 VCO在振荡器核心电路之后是差分输出放大器。放大级提供宝贵的隔离并为IF功能电路如混频器和PLL预定标电路(PLL prescaler)提供灵活的接口。输出可以采用单端形式或差分形式,但是最大输出功率和最低谐波输出只在差分输出模式才能得到。两个集电极开路输出(OUT-与OUT+)都需要上拉元件才能达到集电极电压(VCC)。输出级可以使用上拉电阻或电感。使用上拉电阻是实现输出接口的最直接的办法,它在较低的工作频率或者对电压摆动的需要很小的应用中效果很好。
当需要更大的电压摆动或输出功率时,要为大于负载电阻/电容网络的3dB带宽的频率进行无功功率匹配。匹配网络是一个具有并联电感和串联电容的简单电路。为了给输出级提供DC偏置,用电感把OUT-和OUT+与VCC连接起来,在OUT-和OUT+与负载之间串联上电容。电感和电容的取值根据工作频率和负载阻抗决定。输出和任何传统的差分输出都一样。唯一的约束条件是需要VCC上拉器件和对OUT-、OUT+电压摆动的限制。
比较使用这两种方法所需的设计时间就能看出其中的巨大差别。经典的/分立元件方法要进行精心的设计,成功地开发出分立IF VCO需要几个星期的时间,在实现可靠的、能够投产的设计之前可能需要多次的反复。另一方面,MAX2605-MAX2609可以使VCO的设计在数分钟内完成,而验证和测试仅仅需要一个下午的时间。
由于MAX2605-MAX2609解决了频率调谐范围、偏置和起振的问题,它们彻底地消除了在以往的VCO设计中遇到的难题。只需根据想要的振荡频率选择一个外部电感和输出负载。阅读MAX2605-MAX2609数据资料中提供的图表得到想要的电感值就能轻松地完成设计任务。
在材料成本方面,MAX2605-MAX2609可以比得上传统的分立元件IF VCO。对于制造来说,由于需要很少的元件,Maxim能够实现更便宜的IF VCO,其中每一元件可节省$0.03。
VCO 相关文章:
- 1.9~5.7 GHz宽带低噪声BiCMOS LC VCO(06-06)
- 免调节中频VCO: 第一部分: 设计考虑(09-11)
- 用缓冲放大器解决VCO问题(09-12)
