基于GAF的无线传感器网络MAC协议
簇头的选举产生:GAF算法中簇头承担更多的数据处理和通信,消耗的能量相对较大。在改进的GAF算法中簇头的选举考虑到了节点剩余能量问题,选举剩余能量 较多的节点担任簇头。随机簇头选举算法:节点只知道自己的能量信息和位置信息。假设某次簇头选举在Tr时刻开始,对单元格内任意节点N,以概率P发送测试 消息。概率P与剩余能量成正比,如果测试消息成功,它就发生消息M(Ep,N),Ep为节点N剩余能量;如果消息发送不成功,节点N进入侦听状态。如果在 一个时槽内没有接到发送消息,表明该时槽内没有节点竞争成功,开始新一轮的选举,反之,如果有节点竞争成功,发送M(Ep,N)消息担任簇头,单元格内其 他节点侦听到消息M加入该簇。 2.2 GS-MAC协议描述 在新协议中,由于引入拓扑结构机制,可以减少一部分节点的空闲侦听时间,只保留簇头节点处于活动状态,在簇头选举中考虑到节点剩余能量,在局部范围内做到平衡节点剩余能量,延长了网络生存周期。 簇 头节点维护和S-MAC协议类似的工作/睡眠机制,每个簇头节点周期性的与直接邻近簇头节点通过接收和广播SYNC数据帧来交换调度信息;采用 CSMA/CA机制和随机退避时间;经历RTS/CTS/DATA/ACK通信过程完成数据传输,在数据传输完成之前不遵循其休眠时间安排;采用流量自适 应侦听机制,减少消息的传输时延。 2.3 性能分析 从图3可以看出在节点数目等于10时,几乎每个虚拟单元格都只有1个节点,GAF拓扑控制算法效率低,基本接近S-MAC协议,随着节点数目的逐步增加,GAF拓扑控制算法效率显著提高,能量消耗明显降低。 为 比较两种协议在网络延迟性能方面的表现。在300m×300 m的场景中均匀布置50个固定节点,采用多跳网络拓扑来测试端到端的数据时延,源节点产生20条消息,每条100 Byte,所有消息不分片,在轻流量载荷条件下重复10次实验,测的每条平均消息时延如图4所示,由于源节点在GS-MAC中竞争簇头节点形成的时延,造 成两种协议中第一个转发跳时延有较大差异,随着消息的向前传递,后面排队时延较少,但由于GS-MAC中发现状态的存在,使GS-MAC协议时延略大于 S-MAC协议时延。 综上所述,引进拓扑结构控制的GS-MAC协议能够在正常延时的条件下,进一步降低了节点能耗,延长了网络生存期。 3 结束语
在GS-MAC协议中只有簇头节点进入活动状态如图1和图2所示。
利用NS2对S-MAC协议和新协议(GS-MAC)在能量消耗和传输时延两方面进行比较,其中能量消耗为从源节点发送一定数量包到目的节点的总能耗, 时延为端到端时延。仿真场景设置300 m×300 m,布置10~50个节点,R=300 m,r=100 m,划分9个虚拟单元格。仿真参数选择如表1所示。
通 过分析无线传感器网络S-MAC协议性能,针对在数据业务量少的情况下,大部分传感器节点处于空闲侦听状态,浪费了大量节点能量,引入GAF拓扑结构控制 算法,使得在正常的网络延迟下,大幅减少了处于空闲侦听状态下的节点数量。通过仿真表明,GS-MAC协议具有较高的能量效率,延长了网络使用寿命。
GAF MAC协议 无线传感器网络 GS-MAC 相关文章:
- 无线传感网中一种基于即时信息的TDMA方案(05-27)
- 凌力尔特收购 Dust Networks 进一步拓展无线传感器网络产品能力(11-23)
- 无线传感器网络的结构与特点分析(05-08)
- Crossbow低功耗远距离传输的无线传感器网络产品(04-21)
- 无线传感器网络低占空比MAC协议研究(07-07)
- 基于MSP43O的无限传感器网络温度节点设计(04-07)