Pt膜温度传感器测试系统信号调理模块的实现
一、引言
Pt电阻温度传感器由于精度高、稳定性好、可靠性强、寿命长,所以广泛应用于气象、农林、化纤、食品、汽车、家用电器、工业自动化测量和各种实验仪器仪表等领域。研制开发高性能价格比的测试系统,不仅可为生产商提供必要的测试工具,还可为温度传感器的可靠性研究提供有效的手段。本文介绍了Pt电阻温度传感器测试系统的多通道信号调理模块的原理及电路设计。
二、信号调理模块的构成及工作原理
Pt膜温度传感器测试系统信号调理模块的基本原理如图1所示,整套测试系统一共有n个单元测量电路,能实现传感器的多通道测量。每个单元测量电路采用四线制的方式进行设计,而这种四线制的结构中需要一个精密的恒流源;此外,由于单元测量电路的输出信号较弱,还需要将输出信号进行直流放大,放大后再进行A/D转换。为了提高测量精度,减小测量时外围电路带来的误差,本设计采用了多路电子开关Ka,使得n路单元测量电路共用一个0.5mA的精密恒流源,同时使 n路单元测量电路共用一个放大电路,即在对Pt温度传感器进行测量时,只有当电子开关组Ka和Kb组的第n个开关同时接通时才能够选中第n个Pt温度传感器并对其进行参数的测量。
本系统采用了32个八选一的多路开关器件CD4051和两个74LS138组成电子开关阵列,实现了对128个通道控制,可选择128个Pt电阻中任意一个进行测试。测量电路所测得的Pt电阻传感器两端的电压经过放大电路后进入MSP430单片机的进行A/D转换。
三、恒流源的设计
恒流源原理如图2所示[3、4]。本测试系统恒流源的电流值定为0.5mA,此电流值定为0.5mA主要有以下两个原因:
(1)、如果恒流源的电流值过大,电流在流过Pt电阻时产生的热量会影响测试精度。根据经验,电流值不能大于1mA;
(2)、如果恒流源的电流值过小,在测试时输出的信号就会很小,为了使测量的信号满足A/D的要求就必须加大放大电路的放大倍数,这样就加大了系统的误差。综合考虑上述两个原因,本系统中恒流源的电流值定为0.5mA。恒流源电路设计中使用了TLC2652高精度斩波稳零运算放大器[2]和电压基准源TL431。 TLC2652斩波稳零的工作方式使其具有优异的直流特性,失调电压及其漂移、共模电压、低频噪声等特点。TL431是一个有良好的热稳定性能的三端可调的电压基准源,它的输出电压可以在2.5V到36V范围内设置。
在设计恒流源时,电压基准源TL431使得A、B两端的电压为2.5 V,B点与TLC2652的3脚的电位相等,而TLC2652的3脚与其2脚虚短,即3脚与2脚的电位相等,也就相当于B点与TLC2652的2脚电位相等,即R1两端的电压与A、B两端的电压相等,也为2.5V,从而可以计算出流过R1的电流I1为0.5mA。TLC2652的2脚与其3脚虚断,也就是说TLC2652的2脚没有电流输出,所以有I2=I1。换言之就是我们在C处得到0.5mA的恒流输出[4、5]。
四、放大电路的设计
由于所测出的Pt电阻温度传感器两端的电压信号较弱,所以此电压在进行A/D转换之前必须经过放大电路(如图3所示)的放大。
本系统中放大电路的输入信号在50mV~70mV之间,所用A/D转换的电压范围为0V~2.5V,经过计算,放大电路的放大倍数为35倍左右时可以满足A/D转换的要求。普通的运算放大器的输入失调电压一般在数百微伏以上,失调电压的温度系数在零点几微伏以上。虽然输入失调电压可以被调零,但其漂移则是难以消除的。而斩波稳零型运算放大器TLC2652提供了一种解决微信号放大问题的廉价方案。斩波稳零的工作方式使TLC2652具有优异的直流特性,失调电压为0.5μV(典型值)~1μV(最大值);输入失调漂移电压为0.003μV/℃(典型值),失调电压长期漂移为0.003μV/月[3][8]。经过计算,TLC2652的性能参数可以满足本系统测量精度的要求,所以本系统的放大电路中的运放采用了TLC2652。
- IDT公司推出针对消费电子气压和热电堆温度传感器的高能效传感器信号调理芯片(01-02)
- Intersil推出业内领先的40V JFET输入运算放大器(08-28)
- 0ZMDI推出一款全新节能高精密18位传感器信号调理芯片(08-25)
- 干涉型光纤扰动传感器信号调理电路的设计和仿真 (03-15)
- 传感器的定义及组成(11-11)
- 高速CMOS图像传感器及发展趋势(07-08)