基于DSP控制的数字移相器—变压变频器模块的设计
下式为一经验公式,用于确定一个连续Buck变换器所需的临界电感值。 其中,f为IGBT的开关频率(10~20kHz),D为占空比,IO为输出电流(5~10A)。可计算得LC=2.5~5.0mH,本设计取5.0mH。 输出Vdc=50V,Imax=10A,Rs采样输出电压,通过线性光耦,由DSP进行PID运算调节输出PWM信号,使Buck电路输出电压恒定50V。 D 滤波电容E2的选择 为了获得稳定的输出电压,最好选用等效串联电阻(ESR)较小且容量较大的电容器。特别推荐使用低温特性及泄漏电流特性等优异的钽电解电容器或有机半导体电容器,而且采用小容值电容与大电容(耐压等级相同)并联可起到消除高次谐波与降低等效串联电容的作用。 本次设计中,设定IGBT开关频率为f=10kHz,电感L=5.0mH,E2=2000μF/400V,钽电解电容器。 ③ 纹波改善 由实验波形图可知,在IGBT开关时刻产生纹波。改善IGBT开关状态可以降低纹波,在IGBT门极之前串联一25Ω电阻,可改善IGBT导通情况。输出直流50V纹波波形见图4。 图4 Buck单元输出直流50V时纹波波形(×10) 可见,纹波大小为530mV(+1.1%)满足本设计的要求。 2 三相桥式逆变的设计 图5 三相逆变桥 ① 功率管IGBT的选取 ② 无感阻容吸收RC的选取 ③ LC滤波的设计(无源滤波) 本设计要求输出频率为50~100Hz,可计算得LC=1.01×10-5~2.53×10-6。 图6中,滤波LC的值由经验值和实际实验中比较确定,权衡最小值和最大值,最终选取LA~LC=0.98mH,CA~CC=2μF/500V±5%。 图6 LC滤波 本设计中,LC滤波为无源滤波,虽然结构简单,成本低,但是有一个缺点:只能有一个中心频率,当输出频率改变时,中心频率不能跟随变化,使输出波形稍有畸变。若采用有源滤波器,满足不同频率范围的输出,而波形畸变可以减小到最小,但是相应的成本则会增加。 本设计中无源滤波虽然在不同频率时使波形有些畸变,但是可以满足系统输出的要求。 系统控制模块的设计 ① Buck电路驱动的设计 图7 TLP250驱动IGBT 本设计开关频率为10kHz,三极管BD237/238(NPN/PNP),VCBO=100V,集电极峰值电流Icm=6A(tP<5ms),完全可以达到要求。 R3、IGBT的门极之前,加一小电阻(一般为10~20Ω),用以改善IGBT的开关波形,降低高频噪声。DSP的PWM输出经过上述TLP250光耦电路后的波形输出见图8。 图8 Buck单元PWM经过光耦后的波形输出(×10) 可以看出,推挽后的电容C2为加速开通和关断作用;与C3并联稳压二极管产生恒定
输出端电容器(E2)是为了使输出电压变得平滑而使用的,升压型的产品因为针对负载电流而断续地流入电流,与降压型产品相比需要更大的电容值。在输出电压较高以及负载电流较大的情况下,由于纹波电压会变大,因此根据各自的情况而选用相应的电容值,推荐使用2000μF以上电容器。
在实验中发现,纹波与电感有较大关系,当输出电流未达到电感磁芯的饱和电流时,输出尖峰较小;当达到电感磁芯的饱和电流时,输出尖峰瞬间增大。改善电感及磁芯,采用饱和电流较大的电感,在尖峰较小的情况下,可以达到电流标准值。
图5给出了一个典型的三相逆变器的结构。其中,Va、Vb、Vc是逆变输出三相电压,分别接三相负载,D1~D6为续流二极管。PWMx和PWMx_(x=A、B、C)控制逆变器的6个电压功率管,当一个功率管的上臂导通时(PWMx=1),同一个功率的下臂关断(PWMx_=0)。
系统要求直流输入Vdc最大60V,电流最大10A,输出频率最高100Hz,IGBT开关频率最高3.3kHz(载波比N=33)。根据系统要求,本设计选用FairChild公司FGA25N120AND型IGBT,参数为VCES=1200V,IC=20A,trr=235ns。
RC选取如下:无感电阻R1~R6= 100Ω/5WΩ,无感电容C1~C6=1μF/630V。
逆变输出三相电压Va、Vb、Vc经LC滤波后,以得到平滑的正弦波,分别接三相阻性负载(7Ω),负载连接方式为星形连接。LC原则上只允许基波(中心频率)通过。
1 驱动电路的设计
在本设计中Buck电路和三相逆变桥的驱动开关频率分别为10kHz,和3.3 kHz(最大),中小功率IGBT,采用此芯片作为驱动芯片满足系统设计的要求。
图7为TLP250光耦驱动电路。图中,光耦芯片TLP250供电电压+15V,输出IO=+1.5A,在中功率电路中可以直接驱动IGBT,使用TLP250时应在管脚8和5间连接一个0.1μF的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过1cm。
保护端为过压、过流保护输出端口,一旦过压、过流,保护模块将输出高电平并且保持,禁止TLP250输出脉冲,直到故障解除后复位。
- 基于OV6630图像传感器和DSP的图像采集系统设计(06-16)
- 轨道车辆电动自动门控制系统开发(07-29)
- 用于海洋搜救的多片DSP图像处理识别系统的实现(06-30)
- 基于dSPACE的双绕组感应发电机实时控制系统研究(08-11)
- 基于DSP的运动控制器的研究与开发(10-30)
- 基于ADS1274的可控式高精度数据采集系统(01-07)