微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 传感器 > 低成本传感器及A/D转换接口的设计考虑

低成本传感器及A/D转换接口的设计考虑

时间:07-07 来源:3721RD 点击:

由于在整个压力范围内电阻变化了100Ω,因此必须能够分辨0.1-#937;的电阻才能获得0.1psi (0.1%)的压力分辨率。测量5000Ω中的0.1Ω相当于50,000分之一或15.6位的分辨率。比分辨率更严重的问题是温度变化的影响。由于电阻具有较高的TCR,温度每变化1°C,相当于压力变化10psi对电阻的影响。每摄氏度的温度变化对电阻的影响相当于满量程的10%。

现在考虑电桥电路中采用相同的电阻,激励电压为2V时的情况。其他三个电阻都是5000Ω,并和感应电阻具有相同的TCR。这些电阻的安装条件能够保证其等温。这种方式具有两个显著的优点。

该应用中电桥的最大优点是它能抑制温度引起的变化。分析公式15发现TCR不再是问题。即使电桥电阻加倍输出仍保持不变。只要所有电阻按同比例变化,其输出不变!

电桥的第二个优点是降低了分辨率要求。在压力为0psi时,电桥输出是0mV,在100psi时电桥输出为10mV。要测量0.1psi的压力,则需要从10mV中分辨10µV。相对于直接测量电阻需要15.6位的分辨率而言,只需要10位的分辨率。

从实际应用的角度来看,10位ADC不能直接测量10µV的信号。信号必须放大。信号放大的成本可能会使无需外部放大器的高分辨率ADC更吸引人。低分辨率方案的最大优点在于其对基准的要求。设计能在整个时间和温度范围内稳定达到16位分辨率的电压基准、电流源或参考电阻通常是不切实际的。

该实例中的数值选取不是用来刻意突出电桥的重要性。这些数值对于许多压阻式压力传感器非常典型(见附录2)。

惠斯通电桥的线性化
使用非平衡惠斯通电桥的缺点是其具有非线性。公式15分母中的Ru项表示:电桥的输出与Ru不是线性函数关系。电阻变化非常小时线性误差也很小,而当电桥不平衡时线性误差也变大。幸运的是,如果ADC参考电压来自电桥的话,就可消除这个误差。

图10所示为一个带数字显示的简单温度传感器。温度感应元件(Rt)是铂RTD。选择铂是因为其电阻随温度线性变化。电桥电路除去0°时的多余信号,这样可使ADC的读数等于温度。公式17给出了图10中的电桥信号(Vs)。公式18是ADC的参考电压。两信号都是Rt的非线性函数,但是它们共同作用的结果是线性的。


图10. 在具有数字显示的简单的温度传感器中,电桥电路除去0°时的多余信号,使得ADC读数等于温度。

Vs = (Vb)(R3/(R2+R3) - (R1/(R1+Rt)) 公式17

Vfer = (Vb)(R1/(R1+Rt) 公式18

ADC的输出(公式19)是将公式17和18中的Vs和Vref分别代入公式4中得出的。公式19表示采用这个参考电压时,ADC输出变为Rt的线性函数,并减去所期望的偏移项。

D = Rt(R3/(R1(R2+R3)) - R2/(R2+R3) 公式19

在图10中,R3b和R1b分别调节失调量和灵敏度。当进行调节时,显示器将直接以°C或°F为单位显示温度的大小。唯一的一个明显误差来自RTD自身的非线性。0°C至100°C范围内该误差仅为十分之几摄氏度。

通过MAX1492 ADC的串行接口,还可对图10电路的失调误差和灵敏度误差进行数字校正。这种校准方法不仅无需R1a和R3a,而且还提供了校正RTD中线性误差的机会。如果需要更高的测量分辨率,可用MAX1494替换MAX1492,可使分辨率上升一位。

根据公式19,R4的值不会影响读数。电路中增加R4可以降低RTD的自身热量。同时也减弱了来自电桥的信号,并且降低了参考电压。虽然MAX1492无内部PGA,但是它允许使用较小的参考电压。使用较小的参考电压可以省去额外的放大电路。

结束语
在许多传感器应用中,利用简单电路,使传感器输出和ADC参考输入之间保持适当的关系,可以省去电压基准和电流源。除了降低成本和节省空间之外,这些电路还可消除不理想基准所引入的误差,改善性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top