智能传感器接口在数据采集中的优势
图 1. 智能 ADC 数据采集系统的发展 小智慧有大作用毫无疑问,这不是一种新的概念,不过却经常被忽视。只要可能,我们就应采用智能 ADC 数据采集系统,其发挥的系统级影响大大超过此前介绍的范畴。一般说来,设计人员考虑的问题包括智能处理器解决方案的物理大小或占用面积,当然价位也是非常重要的因素。价格通常是大多数高销量应用的限制因素,这使设计人员不得不采取效率较低的、会影响集成度的独立解决方案。 智能 ADC 系统架构的优势在于,数字和模拟设计都能实现极大的灵活性,这同时也为软件开发提供了极高的灵活性。智能 ADC 解决方案的集成 CPU 和数字外设实现了更简单的 A/D 控制和数据处理功能。ADC 不仅具有全面可编程性,而且无须与主机 CPU 互动就能实现空中控制。此外,智能 ADC 还能作为模拟的预处理器,不仅能捕获已转换的数字数据,而且还能在向系统主机传递数据之前对数据进行处理。这使求数据平均值乃至更复杂的数据过滤等功能都得以简化。 为了说明上述功能减轻主机负荷,我们不妨考虑外部 16 位 ADC 采用 3 线 SPI 接口通信的简单例子。主机不仅要配置 ADC,等待每次转换完成,而且还要检索每个 16 位结果,并处理得出平均值。即便在 ADC 与主机处理器集成的情况下,能优化的也只是数据通信。主机仍要处理数据、计算平均值,并提供所有 ADC 控制和配置功能。 我们不妨将这种简单而低效的系统与智能 ADC 系统相比较,智能系统采用相同的主机功能,但主机只需从"智能" ADC 中检索数据。所有 ADC 控制功能和预处理的数据以及平均值计算都由智能 ADC 完成,从而解放了主机,使其能从事更高级的功能,并使最终应用受益。 智能化程度更高的 MCU 是解决之道 超低功耗 MSP430F2013 MCU 就是此类智能型 ADC 的一个优秀典范。所有的 ADC 控制和数据处理均无需主机完成,从而不仅提高了灵活性,而且还加强了整个系统的效率。这乍看起来似乎对降低成本、提高存储器容量以及 CPU 吞吐量等方面没什么大用,但是我们需考虑到,有的任务每秒必须要处理数十次、上百次,乃至上千次。因此,智能 ADC 所能实现的优势是极为明显的,但如果设计人员在系统设计过程中只考虑采用简单 ADC 的话,那么就会让主机不得不处理大量的数据采集工作,造成无谓的消耗。 智能程度更高的 ADC 所带来的优势和功能远远超出了 A/D 转换及数据处理的范畴。在更高的层面上,MSP430F2013 的 2KB 片上闪存存储器可存储校准数据,以及针对温度变化的传感器补差表,补偿传感器采样信息的不足。此外,闪存与 128B RAM 还能存储数据日志和多采样缓冲。系统主机可用剩余的可用存储器存储其他各种数据。 至主机或 LED 指示器、开关或外部数字时钟等其他系统元素的接口具有多达 10 个通用 I/O 连接,因此显著实现了简化。可处理 SPI 或 I2C 协议的内置通信接口可提供简单而优化的可定制主机数据端口。 MSP430 超低功耗架构的关键优势之一也进一步扩展到了系统模拟领域,能实现非常灵活且易于管理的电源架构,从而充分满足电流需要。由于处理器从亚微安培待机电流的唤醒时间不到 1 微秒,因此该解决方案有助于我们大幅降低平均系统功耗要求。
图 2 显示了有关系统如何利用主机和智能ADC的概念。
图 2. 智能 ADC 的系统架构 结论性的设想 如果您下次设计混合信号应用时要采用外接 ADC,那么不妨考虑一下各种选择。采用简单的外部模数转换器可能并不是最好的解决方案,特别是当采用智能 ADC 较为合适时更是如此。 "智能传感器接口"能够将 16 位 CPU 与 16 位 ADC 的处理能力完美结合在一起,从而大幅简化了设计工作,尤其是在解决方案体积较小时优势更为显著,而且其成本基本相当于专用模数转换器解决方案,有时甚至还会更低。这种数据采集系统架构的优势还能扩展到其他设计领域,如降低功耗、提高系统可升级性以及实现最终设备的差异化创新等。
- 传感器和致动器正成为元器件市场新热(03-12)
- 图像传感器市场突破60亿美元,CMOS将占主导地位(05-22)
- 超低功率“智能尘埃”创新无限,无线传感器技术继续高歌猛进(05-22)
- 电化学气体传感器核心技术见突破(05-26)
- 日本工业机器人选中Cognex视觉传感器作为标准组件(04-14)
- 欧姆龙索能发力通用传感器市场,上海成立合资公司(05-08)