微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 传感器 > 一种无线传感器网络分簇路由算法研究

一种无线传感器网络分簇路由算法研究

时间:06-22 来源:维库开发网 点击:

信采用的自由空间模型不一定正确,另外,直接与簇头通信的能量消耗较大。因此,假设远离簇头的节点可与临近的、能量高于自己的节点通信,且数据经过多路转发直至簇头,满足上述假设条件如式(4)所示:


  由于每一轮每个簇头在簇中的位置以及簇内节点的个数会发生动态变化,为便于分析式(4)的最佳临近节点,在图1中列出了某种状态下4种典型的数据转发方式。

  图1(a)出现在数据收集的前期阶段,由于节点能量充足,靠近基站的节点采用直接传输方式,而远离基站的节点通过式(4)选择下一跳节点进行数据转发;经过多轮数据采集之后,靠近基站的节点因过多参与数据的转发能量迅速降低,依据式(4)出现了图1(b)或图1(c);在数据收集的后续阶段,由于靠近基站的节点整体能量下降,它们分别采用单跳的方式直接与基站通信,同时依据式(4)出现了图1(d)。整个数据采集阶段远离基站的节点都是通过多跳的方式与临近节点通信,说明通过多跳的数据转发能耗要小于直接发送到簇首,同时转发数据的节点能量较高,保证了转发数据时有足够的能量,均衡了网络的能量。


  2.3 稳定数据传输

  在稳定数据传输阶段,普通节点与第一层簇头通信方式和LEACH相同,但是数据的采集、融合工作完成之后不是将数据包直接发送到基站,而是在给定的时隙内发送给第一层各自的簇头。第二层的节点依据能量和距离选出下一跳节点进行数据转发,直至第二层的簇头或直接与基站通信,第二层簇头节点经过二次数据融合后,发送数据至基站。

  3 算法分析和仿真结果

  利用Matlab工具对LEACH,EBAC和CAED算法进行仿真比较,各项参数设置如下:假设无线传感器网络由300个相同的节点组成,随机抛撒在200 m×200 m的区域内,远程基站的坐标是(x==100 m,y=350 m)。每个节点的初始能量为E0=1 J,发送和接收电路的损耗为ETX=ERX=50 nJ/b,数据融合消耗为EDA=5 nJ/b,εfs=10 pJ/(b·m-2)时dd0。其中,d0为常数,数据包长度为4 200 b,广播包长度为60 b,簇头个数kopt=5。节点能量低于Eth=0.000 1 J时,认为其死亡,假设数据融合率为100%,且在转发过程中无数据包丢失。没有误码率。

  图2是存活的节点数与轮数关系图。可以看出,LEACH在整个生命周期曲线比较陡峭,网络中节点的存活数量随时间的推移变化急剧,网络中节点的能量不均衡。EBAC曲线在1 000轮前比LEACH平滑,由于在选举簇头节点时考虑了剩余能量,故性能明显优于LEACH,但是EBAC中簇头直接与基站通信,增加了簇头节点远程通信能量损耗,当运行到某一时刻(大约在1 094轮后),大量节点在轮数相差不多的情况下失效。CAED综合考虑了剩余能量和距离,并且在第二层簇中使用多跳方式转发数据。CAED的曲线比EBAC平滑,进一步延长了网络的生命周期。


  表1统计出网络运行这3个算法时,发生首个节点失效时的轮数,网络有30%的节点失效时的轮数和网络运行800轮时节点的失效个数。表中数值都是经过多次运行相应算法得出的平均值,这里用首节点死亡轮数来衡量网络稳定周期,用30%节点失效来衡量网络生命周期。


  由表1可见,相对于LEACH来说,CAED网络的稳定周期延长了570%以上,同时将网络生命周期延长了458%以上。相对于EBAC来说,CAED网络的稳定周期延长了67%以上,网络生命周期延长了20%以上。3种算法在800轮时,节点的失效个数分别占节点总数的81.7%,11.7%和3.7%,网络的节点能耗进一步均衡,避免了"盲节点"过早的发生。

  图3显示了网络在运行3种算法时,网络总的剩余能量情况,仿真实验中每隔50轮做1次采样记录。从图3可以看出,对网络总的剩余能量而言,CAED明显高于LEACH和EBAC,说明CAED能很好地节省网络能量,延长网络的生命周期。


  4 结 语

  提出一种基于能量和距离的分簇多跳算法。第一层簇头选择时考虑了节点的剩余能量,第二层簇头充分考虑了节点能量和到基站的距离,并且改进了簇内节点的数据转发方式。仿真结果表明,与LEACH算法相比,该算法均衡了网络的能量消耗,明显延长了网络的生命周期。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top