微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 传感器 > 百度智能翻译机发布,人工智能翻译什么水平?

百度智能翻译机发布,人工智能翻译什么水平?

时间:08-26 来源:科技日报 点击:

点其实也是整个人工智能的难点--如何让机器真正像人一样有智能行为。他认为,机器翻译采用数据驱动的方法,其准确程度取决于给计算机提供哪些数据。目前提供最多的翻译数据来自于政府文档,比如联合国有多种官方语言,基本每份文件都有多语种版本,但基本没有体育、娱乐等领域的数据。再加上各国的口语中都存在较多随意性口语或网络用语,生活化气息浓厚,多为非正式的语体材料,因此智能翻译需要庞大的基础词汇库支撑。"其实所有上述问题,理论上来说都可以靠更多的数据来弥补,但是我们数据是有限的。" 吕正东说。

展望:前路漫漫,发展需数据推动

近两年,神经网络机器翻译(Neural Machine Translation, NMT)技术异军突起使翻译应用进一步革新。

NMT模仿人脑的神经思考模式,产出媲美人工翻译的高质量译文,并将误差降低了55%-85%。目前,谷歌公司己将该技术应用于网页翻译与手机应用,译文质量明显提升。此外,腾讯、百度、阿里巴巴等国内互联网公司也将深度学习理念应用到机器翻译。同时,语言处理、语音交互等技术的进步又加速了翻译产品的场景升级,促使机器辅助翻译"(CAT,Computer Aided Translation)过渡到"人工智能交互翻译"(AI Interactive Translation)。

"语言是形式,而不是实质。"现代语言学理论奠基者费尔迪南·德·索绪尔说。同样,对各种花哨的技术概念抽丝剥茧,其核心仍然是AI处理人类语言的三种方法:即基于规则的机器翻译、基于实例的机器翻译和统计的翻译方法。目前谷歌、搜狗等公司基本采用的是最后一种方法。

伴随着翻译方法的完善,机器将完成未来大部分的简单翻译需求,而那些细腻、多元、充满人文特质的复杂沟通以及专业化翻译,人工智能究竟能不能实现?还需要哪些改进呢?

清华大学计算机系教授孙茂松说:"世界语言好几千种,几千种之间的互译,其中绝大多数语言之间都没有足够语料。所以这方面的翻译还需要去做,包括一些模型的探索。"

"AI翻译是一个交叉学科,取决于数学、语言学、计算机科学、神经认知科学等很多方向的进展,因此AI翻译应该和更多的‘知识’结合在一起,让数据推动机器翻译发展。"刘洋说。

此外,在吕正松看来,如何真正让计算机去理解语意中那些委婉的对应关系和不规范的表述,可能需要相当长的时间才能实现。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top