微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 传感器 > 一文读懂七大前沿激光技术

一文读懂七大前沿激光技术

时间:06-27 来源:OFweek 激光网 点击:

脉冲的产生,从而大幅增强储存环光源的性能。

基于储存环的第三代同步辐射光源已经成为支撑物理、化学、材料、医学、生命科学等学科开展基础和应用研究的一种最主要的大科学平台。第三代同步辐射光源具有平均亮度高、脉冲能量稳定和同时支持多用户运行等诸多优点。然而,受原理限制它也同时存在着峰值亮度较低、脉冲长度较长和纵向没有相干性等缺点。为克服储存环光源的这些缺点,人们正在发展X射线自由电子激光。与此同时,近些年随着衍射极限储存环光源的发展,人们开始探索基于储存环产生全相干自由电子激光的可行性,并提出了一些新的方案。

七、硅基纳米激光器和光放大器

清华大学电子系"千人计划"专家宁存政教授长期研究半导体发光物理、纳米光子学、器件极端微型化制作及表征,曾在世界上首次制成尺寸小于半波长的电注入纳米激光器,并首次实现了电注入金属腔纳米激光器的室温连续模运转,是纳米激光技术领域的开拓型领军人物。宁存政教授课题组一直致力于微纳光电子材料器件的物理及应用研究,不断突破激光器和光放大器尺寸小型化极限,为光电集成及其在未来计算机芯片上的应用进行前沿探索。十多年来,课题组专注开发纳米激光器和具有高光学增益的光放大器新材料,最近同时在这两方面取得重大突破。

以上两项研究的另一重大意义在于硅基光电子集成和未来计算机芯片。众所周知,硅材料是目前微电子技术包括计算机芯片的基础,也是未来光电集成的极可能的基底材料。但由于硅是一个效率极低的发光材料,所以未来光电集成芯片中需要以某种方式将其它发光材料与硅衬底集成。而这种集成也是近几十年来光电集成中悬而未决的难题。通常做法是将发光效率高的III-V族化合物半导体与硅粘合在一起。与此相比,二维材料或是纳米线结构不会由于应力或晶格失配引起任何损伤或性能降低,为未来硅基光电集成提供了一个新的思路。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top