射频模拟前端在毫微微蜂窝基站中的应用
40MHz间切换,且整合式无线电收发器将所选取的RF信号予以降频转换和滤波,使其成为基带I/ Q信号,基带信号会由混合信号前端中的双工模拟数位转换器(ADC)予以取样,并转换成适用于数位基带的双12位并行比特流。
高度整合式无线电收发器可降低BOM
图3中所示的整合式无线电收发器是一组适用于高性能3G Femtocell基站的3G收发器。以直接转换架构为基础的接收器,适用于高度整合宽频分码多重存取(WCDMA)接收器,并通过完全整合所有的级间滤波器,以减少物料清单(BOM)。接收基带滤波器提供可选择的频宽,因此WCDMA及GSM-EDGE无线电信号都能够接收,可选择的频宽搭配多重波段低杂信放大器(LNA)输入结构,使GSM-EDGE信号能被视为是UMTS家用基站的一部分而加以监测。
图3 整合式无线电收发器方块图
整合式无线电收发器包含两组完全整合的可编程频率合成器,用以产生发射与接收本地振荡器(LO)信号。其设计采用分数N型架构,以获得低杂信与快速锁定时间。所有必要的组件包括回路滤波器、压控振荡器(VCO)及电容等,都已针对发射与接收合成器加以完全整合,芯片内建的VCO,以高波段频率的两倍和低波段频率的四倍运作,使在所需频率上的VCO泄漏功率(Leakage Power)与VCO的调节范围需求最小化,该VCO采用多波段结构,借以涵盖广大的作业频率范围,此设计包含频率与振幅校正,以确保振荡器能一直在优化的性能下运作。
且振荡器在200微秒(μs)的锁相回路(PLL)锁定时间中发生的可完全自主的校正功能,不需用户的输入,内建VCO输出被送入经过调整的缓冲级,然后送至正交产生电路。经过调节的缓冲是用以确保最小电流及与LO相关的杂信会产生在VCO的传输中。正交产生器会生成高精确相位信号,用以驱动调变器与解调变器,此外,整合式无线电收发器已采取特殊的预防措施,借以提供在分频双工(FDD)系统的发射与接收链之间所需要的隔离功能。
接收器前端包含三组高性能单端LNA,使整合式无线电收发器能支持三波段应用设备。其中两组适用于1,800M~2,170MHz的高波段选项,另外一组则适用于824M~960MHz的作业。级间RF滤波功能已完全整合,以确保外部波段外的阻断器能在混频器之前被适当的衰减,单端50欧姆(Ω)输入结构使连接更为容易,同时也减少小尺寸单端双工器所需要的匹配组件,组件的线性度并可确保具有大范围SAW与陶瓷滤波双工器的良好性能。
整合式无线电收发器的高线性度的解调变器电路是用来将RF信号转换成基带同相及正交要素。两组解调变器都包含在内,一组针对高波段LNA输出优化;另一组则是针对低波段。高波段与低波段输出会被加以结合,并直接送入基带低通滤波器的第一级当中,而这会使最大阻断信号在基带放大之前遭到缩减。接收器的合成器提供从VCO分配系统驱动至混频器的正交LO。可编程除法器使相同的VCO可被使用在高波段与低波段上,上述布局解调变器与VCO分配电路的设计,就能实现90o正交相位与振幅匹配。
基带部分包含经过分配的增益与滤波功能,是为以60dB增益控制范围提供最大54dB的增益所设计。通过此设计,通带涟波(Pass-band Ripple)、波群延迟(Group Delay)、信号损耗及功率消耗等都能维持在最小化。整合式无线电收发器中的滤波器校正是在生产程序中执行,这可产生较高的精确度与易使用性,有两组可供选择的第七阶基带滤波器可以使用,一组具有适用于WCDMA的1.92MHz截止点,另一组则具有适用于GSM的100kHz截止点。
在WCDMA模式下,整合式无线电收发器能以分配于整个接收信号链的90dB增益控制范围提供102dB的增益。RF前端包含30dB的控制范围,其中18dB在LNA,12dB在混频器跨导(Transconductance)。6dB下,两组基带主动式滤波器级都可提供18dB的增益控制范围,这将会产生三组12dB,总共36dB的增益控制范围。可变增益放大器(VGA)以1dB执行24dB的增益控制范围,为简化编程与确保接收器性能和动态范围的优化,只针对总体所需接收增益加以编程即可,整合式无线电收发器将增益设定解码,并将不同区块间的增益予以自动分配。
发射器使用直接转换调变器,该转换器具有高线性度及低杂信,不须使用外部发射SAW滤波器。针对I与Q通道的差动直流(DC)耦合基带接口,能支持从1.05~1.4伏特(V)的宽广范围输入共模电压(VCM),最大容许信号摆幅为550毫伏特峰值,相当于在I或Q任一通道上1.1Vp-p的差动范围。基带输入的信号会在正交调变器之前以4MHz的截断频率通过一组第二阶巴特威士(Butterworth)滤波器,借以抑制波段外的突波,收发器中的校正技术使I/ Q平衡与相位