GPS接收机射频前端电路原理与设计
化简式(14),得到两级单元电路级联后的总噪声系数为:
Fo=F1+(F2-1)/G1 (15)
同理可得,n级单元电路级联时的总噪声系数为:
Fo=F1+(F2-1)/G1+(F3-1)/(G1G2)+Λ+(Fn-1)/(G1G2ΛGn-1) (16)
可见,GPS接收机中各级单元电路的内部噪声对级联后总噪声系数的响应有所不同,级数越靠前的单元电路的噪声系数对总噪声系数的影响越大。因此,总噪声系数主要取决于最前面几级单元电路的噪声系数,其中天线热噪声对接收机性能影响最大,故设计时采用接收天线、射频频段选择带通滤波器及高频低噪放(LNA)等器件组成天线单元(如图4所示)。天线单元采用DC 5V供电,其中LNA采用高增益、低噪声、高频放大器MAAM12021,其增益高达21dB、噪声系数低于1.55dB,有利于降低GPS接收机的总噪声系数;其工作频段处于1.5~1.6GHz,适合于C/A码GPS接收机的频带需求,可满足高增益和低噪声系数的性能指标要求。
4、GPS接收机射频单元
噪声总线伴随着信号同时出现,尽可能提高噪声背景下输出端的信噪比是改善接收机灵敏度的重要措施。GPS接收机天线单元接收并提供给射频单元的信号频率很高而信道带宽又很窄,要直接滤出所需信道,则需Q值非常大的滤波器,至少目前的技术水平难以满足这一指标;另外高频电路在增益、精度和稳定性等方面的问题,在高频范围直接对GPS卫星信号进行解调很不现实。为此,在射频单元设计中采用"超外差"式多级变频配合区配滤波器的电路结构,以消除噪声干扰,解决高频信号处理中所遇到的困难。适合这种电路结构的芯片采用了第二代GPS接收机射频前端GP2010。它采用44引脚、帧面方形封装,主要集成了频率合成器、混频器、自动增益控制(AGC)电路以及数字量化器等。GP2010接收的信号频率与L1载波的卫星信号频率兼容,主要用于设计C/A码GPS接收机的射频单元。微弱的GPS高频信号通过超外差式三级混频电路,去掉了其它信道干扰,获得了足够增益,解调并撮出所需的中频信息。图5给出了前两级超外差式下变频器和带有自动增益控制(AGC)电路的第三级混频器的工作原理图,每经过一次下变频,输出信号的频率降低、幅度增大,而其它信道和频段的干扰则被逐步滤除。
GP2010利用混频器将高频GPS信号搬到很低中频频率的同时引入了镜频干扰,而利用滤波器对镜频干扰的抑制效果取决于镜频频率与信号频率之间的距离,或者说取决于中频频率的高低。如果中频频率高,则信号与镜频相距较远,那么镜频成份就能受到较大抑制;反之,如果中频频率较低,则信号与镜频相隔不远,滤波器对干扰的滤波效果就比较差。由于信道选择在中频进行,同理,较高的中频频率对信道选择滤波器的要求也较高,于是镜频抑制与信道选择形成一对矛盾,而中频频率的选择成为平衡这对矛盾的关键。所以在GPS接收机设计中,通常使用两级或三次变频来取得更好的折衷。
由图5可看出,GP2010的三级变频器采用了中心频率分别为175.42MHz、35.42MHz和4.309MHz的三个中频滤波器。各级混频器需要的本振信号均由片内集成锁相环(PLL)频率合成器提供(如图6所示)。它主要由PLL振荡器回路、鉴相器、PLL环路滤波器、分频器和一个完整的1400MHz压控振荡器(VCO)等元件组成。PLL采用10.000MHz参考频率;VCO的控制增益为150MHz/V、输出频率范围为1386~1414MHz。为了提供高稳定度参考频率源,设计中采用了温度补偿型晶体振荡器(TCXO)自输入阻抗为5kΩ的参考频率提供10.000MHz的AC小信号频率给PLL振荡器。当PLL相位锁定参考信号时,鉴相输出逻辑高电平指示相位已锁定,相位锁定时间约需6ms,环路增益约为150dB。VCO输出的1400MHz信号作为第一本振信号,由其分频产生的140.0MHz、31.111MHz信号分别作为第二本振第第三本振信号。当GP2010接收到1575.42MHz的GPS卫星信号时,通过三级变频可得到4.309MHz的中频信号。
为配合通道单元和解算单元完成导航信号的数据提取及信号处理,在5.714MHz采样时钟控制下,GP2010的片内集成数字量化器可实现对4.309MHz的中频卫星信号进行数字量化,从而为通道单元相关器提供TTL电平的2位量化输出,即1.405MHz的二进制符号及量值数字信息,如图7所示。为了得到平稳的中频卫星信号及采样数字输出,该模块同时产生AGC控制信号用于稳定第三级变频(如图5(b)所示)时所产生的中频信号幅度。
总之,GP2000芯片组是Zarlink半导体公司为设计GPS接收机而推出的一系列集成电路,采用GP2000芯片组可设计出多通道卫星信号接收设备。在GPS接收机设计中,天线单元的设计着重考虑频段选择和高频低噪放对接收
- 基于单芯片的GPS接收机硬件设计(02-18)
- 一种应用于车载系统的GPS接收机射频前端的设计(02-20)
- 用于GPS接收机的硅锗(SiGe)下变频器(09-08)
- 创新混频器让混频设计更有保障(04-18)
- 智能天线射频前端电路的研究和设计(01-13)