利用扩频时钟降低电磁干扰
作为工程师来说,您知道消费类电子设备的操作速度有多快,它们每秒又能执行多少任务吗?这些设备的高速操作带来了许多乐趣,使直观的触控手机和视频直播以及许多实际的应用都成为了可能,例如为网络和通信设备驱动高速数据。
电子设备性能水平和速度的提高给工程师带来了许多挑战。当设计这些设备时,安全性是关键因素,需要特别注意。附近设备的电磁干扰(EMI)是用户安全和可靠运行的一个主要威胁。
电磁干扰
一次笔者正通过HDTV看足球赛时,就要射门了,手机突然接到一个电话,电视立即就没了信号。然而,挂掉电话后电视信号又有了。这就是电磁干扰的案例。
每一个电信号都是电场和磁场的结合。任何时域内有限的(或有界)信号在频域都是无限(或无 界)的,反之亦然。所有电气系统都具有携带信息的信号,因此,它们都具有特定的模式。这些模式是由接收端和发射端使用的通信协议定义的,接收端和发射端可以位于同一个PCB上靠近芯片的位置,也可以远至地球和卫星。在时域内具有固定模式的信号,其能量会分布在较宽的频率范围内。
例如,图1显示了时域和频域内的125MHz时钟信号。在时域内,这个时钟信号具有周期性,其能量在频域内分布范围很广。图中125MHz、375MHz、625MHz和875MHz处的标记显示了频域的四个连续高能量点。峰值能量存储在125MHz的基频,为10.55dB。此外,375MHz、625MHz和875MHz是125MHz时钟信号的奇次谐波。该能量是电磁干扰的一个关键因素,它会干扰附近工作的其他系统。在特定工作频率具有峰值能量的系统就是电磁辐射源的一个例子。
在手机和电视的例子中,辐射源为手机。在通过LCD HDTV看足球赛时,机顶盒被调整到54到890MHz范围内的体育频道。当手机处于空闲模式时(即没有打电话或发短信时),它不会发射数据也不会产生辐射。然而,当手机接到来电时,它开始与最近的基站通信。在传输过程中,手机使用更大的功率并在GSM频段(900MHz)内传送信号,这就会对相邻的机顶盒频率范围(接近890MHz)产生辐射。由于这种辐射的存在,机顶盒无法解码广播电视信号。这在很多家庭中不会发生,这是由于在电视和手机的工作频率和电磁干扰防护方面考虑了足够的裕量。然而,当在800MHz范围内支持4G传输时,手机和电视设计人员将会面临更多的电磁干扰挑战。
这种破坏发生在消费类设备中时造成的威胁并不算大,然而,想象一下,当 Wi-Fi信号干扰到危险化工厂的控制操作时又会怎样?历史上有许多事故就是由于电磁干扰所造成,因此,世界领先国家都在从电磁干扰方面来规范电子设计。
除了电磁干扰辐射以外,还存在来自电路板布线、电源、电容或电感耦合的传导电磁干扰,这会干扰其他设备的系统操作以及功能。
许多国际监管机构(IEC、CISPR和EN)制订了系统可以有的最大辐射,同时也定义了不应影响系统的最小电磁干扰水平。电磁干扰的国际标准是基于应用和终端设备定义的,例如:军事、消费类、工业和汽车等。
高速设备是由高速时钟驱动的设备。主要影响EMI的因素是高速时钟信号,它在时域上呈现周期性。如图2所示,125MHz的时钟信号在基频上具有峰值能量和较强的奇次谐波信号(如图1所示)。
图1:时域和频域内的时钟信号。
图2显示了125MHz时钟集中于基频的频谱分析。峰值表明基频的能量为-5.29dBm。如果中心频率的能量降低了,则由时钟信号引起的辐射也会下降。在时钟信号驱动大多数板上器件的系统中,电磁干扰会显著提高。扩频技术采用同样概念来提高系统的抗电磁干扰性能。
图2:时钟信号的峰值能量。
扩频技术
在扩频技术中,高频时钟信号通过低频调制。调制信号的频率通常为30~120kHz。由于调制,储存在基频的能量将分布在一个较宽的频率范围内并使峰值降低(如图3所示)。假如没有采用扩频技术,125MHz时钟信号的峰值为-5.29dB。经过±2%的扩展,峰值会降低到-13.37dB。调制曲线、扩展类型、扩展百分比都是扩频技术的重要参数。
图3:经过±2%中心扩频的125MHz时钟。
调制曲线:简单来说,调制信号波形代表了调制曲线。有两种大家熟悉的曲线:Linear和Lexmark。Lexmark相对Linear来说可以更好地降低峰值。Linear曲线形状上类似于三角波。
扩展百分比:调制信号的峰峰值振幅代表了扩展百分比。扩展百分比代表标称信号频率的偏差。
扩展类型:如果标称信号频率是在调制曲线的中心,则称为中心扩展。如果信号频率在调制曲线的顶部,则称为向下扩展。
使用扩频技术降低峰值的效果取决于所选的扩展百分比和扩展曲线。以下案例显示了由扩展百分比增加带来的相应辐
- 莱尔德科技推出新型2.5 GHz、65度DUAL SLANT 45 WIMAX基站天线(09-30)
- 利用SmartFusion2的SoC的数据采集与交互系统应用设计(03-14)
- TI:如何通过一个差分接口来延长SPI总线(03-24)
- RS-485应用设计参考(03-07)
- 从三个角度看ZigBee EMI/EMC预一致性测试(02-21)
- VoIP使用以太网供电的隐性成本(09-17)