微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 100G系统中PM-QPSK光解调器的研究

100G系统中PM-QPSK光解调器的研究

时间:10-23 来源:3721RD 点击:

PM-QPSK技术具有高的频谱效率,将传输符号的波特率降低为二进制调制的四分之一,并能使光信噪比极大改善,可以用强大的DSP来处理极化模复用信号。文章分析了PM-QPSK技术调制和解调的基本原理,对100G系统中接收机前端光解调器进行详细分析。

引言

PM-QPSK(Polarization-multiplexed Quadrature Phase Shift Keying,偏振复用正交相移键控)的信号在接收侧采用相干检测技术可以实现高性能的信号解调,和直接解调、差分解调方式相比,相干检测所使用的本地激光器的功率要远大于输入光信号的光功率,所以光信噪比可以极大地改善[1]。特别是相干检测技术充分利用强大的DSP(Digital Signal Processing,数字信号处理)技术来处理极化模复用信号,可以通过后续的数字信号处理补偿并进行信号重构,可以还原被传输的信号的特性(极化模、幅度、相位),大幅度消除光纤带来的传输损伤,如PMD(Polarization Mode Dispersion,偏振模色散)容忍度达30ps,无需线路色散补偿就可以容忍几万ps/nm,相比与其他的100G传输方案,如非相干PM-DQPSK或OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术),PM-QPSK结合相干检测提供了最优化的解决方案,这被大多数的系统供应商选择为100G传输方案。

PM-QPSK调制原理

四进制移相键控(QPSK)是一种多元(4元)数字频带调制方式,其信号的正弦载波有4个可能的离散相位状态,每个载波相位携带2个二进制符号,第n个时隙的QPSK信号可以表达为:

(1)

其中,A是信号的振幅,为常数;θn为受调制的相位,其取值有四种可能,具体值由该时隙所传的符号值决定;fc是载波频率;Ts为四进制符号间隔。QPSK常用的四种相位值有两套,分别称为A方式和B方式,若,则为0、π/2、π、3π/2,此初始相位为0的QPSK信号的矢量图如下图1中A方式;若,则为π/4、3π/4、5π/4、7π/4,此初始相位为π/4的QPSK信号的矢量图如下图1中B方式。QPSK调制是响应进入的码对(00、01、10、11),对光载波作相移,表1给出了四元符号对应的两个比特和A、B两套相位值[2]。

单个100Gbps被分为两个极化模式-TE(横电模)与TM(横磁模)的两个50Gbps流,这一步骤产生出相同频率的两个载波,然后每个载波做QPSK调制,由于QPSK调制将2个比特封装在一个符号内,两个极化的模式可以分别得到两个25G符号/秒的流,总计为100Gbps。由于QPSK信号是以两个极化面且以复用的极化模形式传输,因此它可以叫做DP-QPSK(双极化QPSK),或叫PM-QPSK(极化模式QPSK)。


图1 QPSK A和B 两种方式矢量图


表1 QPSK的两套相位值

相干接收PM-QPSK调制解调过程

PM-QPSK在偏振态、相位和波形多个维度进行调制,具有较大的自由度且每个维度复杂度较低,发射机工作过程如下:连续激光器发出的光信号等分后作为两个QPSK调制器的载波光源,数据经QPSK编码、驱动放大和低通滤波驱动后驱动QPSK调制器;两路经QPSK调制后输出的光信号在偏振态正交化后由偏振合束器汇聚为一路光波信号进入线路。可在连续激光器和分光器之间引入脉冲发生器,通过改变光脉冲形状进一步抑制和补偿光传输损伤。其过程如图2所示。

数字相干接收机将传输通道设计的复杂度转移到了接收机。数字相干接收机通过相位分集和偏振态分集将光信号的所有光学属性映射到电域,利用成熟的数字信号处理技术在电域实现偏振解复用和通道线性损伤(CD、PMD)补偿,简化传输通道光学色散补偿和偏振解复用设计,减少和消除对光色散补偿器和低PMD光纤的依赖。


图2 PM-QPSK调制解调过程

数字相干接收机工作过程如下:本振激光器发出的光信号等分后作为两个90°混频器的相干光源;线路输入光信号经偏振分束器分为两路偏振态相互正交的光信号分别进入两个90°混频器与本振光信号产生干涉;混频器输出光信号经平衡接收光电二极管转换为模拟电信号,经高速模数转换器采样量化后转换为数字信号;数字信号在数字信号处理器中完成数据恢复[3]。

PM-QPSK光解调器

PM-QPSK光学解调器部分较为复杂,采用偏振分集内差检测,将光学属性映射到电域以解析光调制格式的信息。内差检测与零差检测结构相似,利用90°光混频器与本征混频同时提取信号的同相分量和正交分量,通过电信号处理消除相位噪声,从而实现信号调制相位的检测和解调,放宽了对本振激光器与发射机激光器的频率相位一致性要求,兼具零差检测和外差检测的优点。

在本文所介绍的100G传输系统中,接收机前端光学解调器结构示意图如图3所示。


图3 PM-QPSK光解调器结构示意图

其中本地振荡

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top