蓝牙低能耗技术内幕
蓝牙低能耗无线技术利用许多智能手段最大限度地降低功耗。
蓝牙2.1+EDR/3.0+HS版本(通常指"标准蓝牙技术")与蓝牙低能耗(BLE)技术有许多共同点:它们都是低成本、短距离、可互操作的鲁棒性无线技术,工作在免许可的2.4GHz ISM射频频段。
不过它们之间有一个重要区别:蓝牙低能耗技术从一开始就设计为超低功耗(ULP)无线技术,而标准蓝牙技术主要是能够构成"低功耗的"无线连接。
标准蓝牙技术是一种"面向连接"的无线技术,具有固定的连接时间间隔,因此是移动电话连接无线耳机等高活动连接的理想之选。相反,蓝牙低能耗技术采用可变连接时间间隔,这个间隔根据具体应用可以设置为几毫秒到几秒不等。另外,因为BLE技术采用非常快速的连接方式,因此平时可以处于"非连接"状态(节省能源),此时链路两端相互间只是知晓对方,只有在必要时才开启链路,然后在尽可能短的时间内关闭链路。
BLE技术的工作模式非常适合用于从微型无线传感器(每半秒交换一次数据)或使用完全异步通信的遥控器等其它外设传送数据。这些设备发送的数据量非常少(通常几个字节),而且发送次数也很少(例如每秒几次到每分钟一次,甚至更少)。
BLE的两种芯片架构
蓝牙低能耗架构共有两种芯片构成:单模芯片和双模芯片。蓝牙单模器件是蓝牙规范中新出现的一种只支持蓝牙低能耗技术的芯片--是专门针对ULP操作优化的技术的一部分。蓝牙单模芯片可以和其它单模芯片及双模芯片通信,此时后者需要使用自身架构中的蓝牙低能耗技术部分进行收发数据(参考图1)。双模芯片也能与标准蓝牙技术及使用传统蓝牙架构的其它双模芯片通信。
图1:双模芯片将使用其架构中的蓝牙低能耗部分与单模器件通信。
双模芯片可以在目前使用标准蓝牙芯片的任何场合使用。这样安装有双模芯片的手机、PC、个人导航设备(PND)或其它应用就可以和市场上已经在用的所有传统标准蓝牙设备以及所有未来的蓝牙低能耗设备通信。然而,由于这些设备要求执行标准蓝牙和蓝牙低能耗任务,因此双模芯片针对ULP操作的优化程度没有像单模芯片那么高。
单模芯片可以用单节钮扣电池(如3V、220mAh的CR2032)工作很长时间(几个月甚至几年)。相反,标准蓝牙技术(和蓝牙低能耗双模器件)通常要求使用至少两节AAA电池(电量是钮扣电池的10至12倍,可以容忍高得多的峰值电流),并且更多情况下最多只能工作几天或几周的时间(取决于具体应用)。注意,也有一些高度专业化的标准蓝牙设备,它们可以使用容量比AAA电池低的电池工作。
超低功耗无线技术
蓝牙低能耗技术的三大特性成就了ULP性能,这三大特性分别是最大化的待机时间、快速连接和低峰值的发送/接收功耗。
无线"开启"的时间只要不是很短就会令电池寿命急剧降低,因此任何必需的发送或接收任务需要很快完成。被蓝牙低能耗技术用来最小化无线开启时间的第一个技巧是仅用3个"广告"信道搜索其它设备,或向寻求建立连接的设备宣告自身存在。相比之下,标准蓝牙技术使用了32个信道。
这意味着蓝牙低能耗技术扫描其它设备只需"开启"0.6至1.2ms时间,而标准蓝牙技术需要22.5ms时间来扫描它的32个信道。结果蓝牙低能耗技术定位其它无线设备所需的功耗要比标准蓝牙技术低10至20倍。
值得注意的是,使用3个广告信道是某种程度上的妥协:这是在频谱非常拥挤的部分对"开启"时间(对应于功耗)和鲁棒性的一种折衷(广告信道越少,另外一个无线设备在选用频率上广播的机会就越多,就越容易造成信号冲突)。不过该规范的设计师对于平衡这种妥协相当有信心--比如,他们选择的广告信道不会与Wi-Fi默认信道发生冲突(见图2)。
图2:蓝牙低能耗技术的广告信道是经过慎重选择的,可以避免与Wi-Fi发生冲突。
一旦连接成功后,蓝牙低能耗技术就会切换到37个数据信道之一。在短暂的数据传送期间,无线信号将使用标准蓝牙技术倡导的自适应跳频(AFH)技术以伪随机的方式在信道间切换(虽然标准蓝牙技术使用79个数据信道)。
要求蓝牙低能耗技术无线开启时间最短的另一个原因是它具有1Mbps的原始数据带宽--更大的带宽允许在更短的时间内发送更多的信息。举例来说,具有250kbps带宽的另一种无线技术发送相同信息需要开启的时间要长8倍(消耗更多电池能量)。
蓝牙低能耗技术"完成"一次连接(即扫描其它设备、建立链路、发送数据、认证和适当地结束)只需3ms。而标准蓝牙技术完成相同的连接周期需要数百毫秒。再次提醒,无线开启时间越长,消耗的电池能量就越多。
蓝牙低能耗技术还能通过两种其它方式限制峰值功耗:采用更加"宽松的"射频参数以及发送很短的数据包。两种技术都
- 光缆结构及工艺的发展(03-04)
- 基于Zigbee的远程家庭监护系统的应用研究(04-08)
- 触摸屏基本原理(04-16)
- 无线传感器网络的服务质量保障技术(10-16)
- 网络自组织通信模式和技术研究综述(10-26)
- 视频传感器网络覆盖控制(Coverage Control)问题研究概述(11-24)