HSDPA演进:基于OFDM和MIMO的技术
OFDM信号处理比较简单,它使用了两种众所周知的数字信号处理技术:快速反傅立叶变换(IFFT,InverseFastFourierTransform)和快速傅立叶变换(FFT,FastFourierTransform)。调制过程如图1所示:
图1OFDM信号调制过程
在OFDM处理的发射侧,首先将原始数据进行信道编码以克服信道的随机差错,随后进行数据交织,这样可以解决信道的突发差错。随后将数据比特映射成符号,可以进行四进制移相监控(QPSK,QuaternaryPhaseShiftKeying)映射,也可以是正交幅度调制(QAM,QuadratureAmplitudeModulation)映射。然后进行串并变化,并进行快速反傅立叶变换,以形成多个正交的子载波。为了克服多径衰落引起的符号间干扰,在符号末尾要插入保护间隔。在接收侧首先将符号保护间隔删除,然后进行快速傅立叶变换解调出各个子载波的数据,然后进行并串变换、去交织、译码以恢复初始的数据。
OFDM另外一个优点就是在频域的扩展比较简单,只需要简单的调整子载波的数目就行。比如对于WCDMA的5M带宽,可以采用1024个子载波。当然,OFDM技术也存在一些需要克服的问题。比如其面临的第一个挑战就是较高的峰均比(PAPR,Peak-to-AveragePowerRatio),过高的PAPR将增加对射频原件线性的要求,尤其是增加了对功放的要求。因此如果不对PAPR进行适当的处理,那么放大器的功率效率将下降,这无疑将影响到终端的大小和电池的寿命。目前学者们在这个方面已经提出了多种方案,其中的一种比较重要的方法就是利用数字信号处理和编码技术加以解决。OFDM面临的第二个问题就是它对频偏十分敏感,因此对晶振的要求非常高。
4、HSOPA中的MIMO技术
在OFDM系统中虽然多个子载波相互正交,提高了系统的频谱效率。但是,由于在每个符号末尾插入了循环保护间隔,因此在一定程度上反而降低了传输效率。
由于MIMO(MultipleInputMultipleOutput)系统可以提高无线系统的系统容量和系统的可靠性,所以该技术得到了越来越多的关注,其中的一些关键技术已经被写入了一些无线通信的标准中。
MIMO信号可以通过两种不同的方式来改善无线通信:一种是分集(Diversity)机制,而另一种就是空间复用(SpatialMultiplexing)机制。分集机制通过利用发射天线和接收天线之间多条通路来改善通信系统的鲁棒性(Robustness),从而改善系统的误码率(BER,BitErrorRate)。分集也可以通过多个发射天线来获得,但是此时必须考虑多个发射天线之间的干扰,这就是空时编码(STC,Space-TimeCoding)要研究的内容。我们把BER对信噪比(SNR,SignaltoNoise Ratio)的斜率称为分集阶数(Diversity Order)。对于一个具有Mr根接收天线和Mt根发送天线的MIMO系统,通过空时编码可以达到的分集阶数为MtMr。
另一种技术是空间复用机制,在充分散射的MIMO环境中,接收天线可以识别出同时从多个发射天线发射出来的信号。也就是说,系统可以等价为一个并行独立的数据流,其容量是单天线系统的min(Mr,Mt)倍。而我们知道对于功率,容量与之仅成对数关系。所以对于MIMO系统,其容量增益来自多个并行的空间信道,因此我们称之为空间复用。该机制的一个著名实例就是BLAST(BellLabsSpaceTime)系统。
在目前实际的无线应用中,IEEE802.11n中采用了MIMO技术,所以其传送的数据比特速率是IEEE802.11g的两倍。
MIMO实现空间分集是比较简单的,通过简单的空时分组编码就可以实现,例如alamouti码,在该系统中发送天线是两根,发送的符号每两个分成一组,表示为x1和x2。对于第一根天线其发送的序列是x1和x2*,同时第二根天线发送的序列是x2和x1*。这两根天线所发送的信号序列是正交的,其系统框图如图2所示:
图2Alamouti编码调制框图
MIMO系统和OFDM系统的结合将减小空时处理的复杂度。例如,对于一个2×2(两根发射天线,两根接收天线)的MIMO系统而言,在一个5MHz的信道上,OFDM的处理复杂度将比传统的CDMA系统低12倍。
5、HSOPA的频谱规划
HSOPA的频谱可以跟现有的3G系统共载频,也将引入新的频段,比如在欧洲2.6GHz的频谱已经分配给了IMT-2000(InternationalMobileTelecommunication-2000)技术,并且在2008年后便可以使用。在建设的初期,由于用户数量和负荷都比较少,一般考虑将HSOPA和现有的3G系统共载频,这样可以重复利用馈线和天线,节省成本。随着用户数量的不断发展,HSOPA会对其它3G业务产生较大的干扰,所以,此时建议HSOPA使用单独的载频。
6、小结
将OFDM和MIMO两种关键技术引入HSOPA中,大大增强了其访问因特网的能力:可以提供更高的数据速率;可以提供更强的QoS保证;可以承载更多的用户数目;大大降低了每兆字节的传输成本,提高了运营商的商业竞争力。
- 全球WiMAX论坛主席Ronald Resnick演讲(08-23)
- NGN之路:十字路口的思考(01-10)
- 下一代网络中的SIP-I协议(01-27)
- NGN SIP 域内的标准化(01-27)
- 朗讯IMS:NGN融合的引擎(01-01)
- 亚太将成IPv6下个热点地区?(01-01)