微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 分布式光纤传感技术的特点与研究现状

分布式光纤传感技术的特点与研究现状

时间:03-02 来源:中国机械专家网 点击:

光纤上的分布。

2.3、利用布里渊效应的分布式光纤传感技术

2.3.1 利用自发布里渊散射的分布式光纤温度、应变传感技术

光通过光纤时,光子和光纤中因自发热运动而产生的声子会产生非弹性碰撞,发生自发布里渊散射.散射光的频率相对入射光的频率发生变化,这一变化的大小与散射角和光纤的材料特性有关.与布里渊散射光频率相关的光纤材料特性主要受温度和应变的影响,因此,通过测定脉冲光的后向布里渊散射光的频移就可实现分布式温度、应变测量.Tkach等人在1989年提出了一种基于该原理的分布式传感器[8].Parker等人于1997年通过实验观察到温度、应变与自发布里渊散射光的功率分别存在正、反比例关系,并依据布里渊散射光的频移与温度和应变的变化成正比的实验结果而提出,通过求解功率变化与频率变化的耦合方程可实现单根光纤上温度与应变同时测量[9]。

2.3.2 利用受激布里渊效应的分布式温度、应变传感技术该技术

最初是由日本NTT的Horiguchi[10]提出的,由于它在温度、应变测量上所能达到的测量精度、传感长度和空间分辨力高于其它传感技术,目前得到广泛的关注与研究。基于该技术的传感器的典型结构为布里渊放大器结构,如图3所示。处于光纤两端的可调谐激光器分别将一脉冲光与一连续光注入传感光纤,当两束光的频率差处于相遇光纤区域中的布里渊增益带宽内时,两束光就会在作用点产生布里渊放大器效应,相互间发生能量转移。在对两束激光器的频率进行连续调整的同时,通过检测从光纤一端射出的连续光的功率,就可确定光纤各小段区域上布里渊增益达到最大时所对应的频率差.所确定的频率差与光纤上各段区域上的布里渊频移相等,因此在光纤上与布里渊频移成正比的温度和应变就随之确定.该传感技术所能达到的测量精度主要依赖于两台激光器的调谐精度。

图3 基于受激布城渊效应的分布式光纤传感器框图

当脉冲光的频率高于连续光的频率时,脉冲光的能量向连续光转移,这种传感方式称为布里渊增益型;当脉冲光的频率低于连续光的频率时,连续光的能量向脉冲光转移,这种传感方式称为布里渊损耗型.当光纤上的温度或应变为均匀分布时,布里渊增益传感方式会引起脉冲光能量的急剧降低,从而难以实现长距离的检测;布里渊损耗传感方式则引起脉冲光能量的升高,从而能实现长距离的检测.加拿大的鲍晓毅等人采用布里渊损耗的方式实现了长达51km的传感长度,并在近期实现了0.5m的空间分辨力[11].德国的Garus也提出了一种基于频率域分析法的新型分布式光纤传感技术[12],它同样利用布里渊频移来实现温度和应变的传感,但在实现被测量的空间定位时没有利用传统的光时域反射法,而是利用了受激布里渊散射的频谱特性。

2.4、利用传输模耦合的分布式传感技术

该传感器的一般形式是,光的入射与探测分别处于光纤的两端.如果传感光纤支持不同传播速度的两种传输模,那么在一定外界条件的作用下,光纤本征传输模的一部分能量就会耦合到另一传输模。因此在光纤另一端输出的耦合模的强度就能反映出被测量的大小,两传输模之间的延迟时间则反映出耦合点的位置。

Frank于1986年采用调频载波法来测量一双折射光纤上横向应力的分布[13]。Katrotsios于1987年提出一种采用迈克尔逊干涉仪的相位测量方案[14]。

该传感技术在理论上可得到极高的空间分辨力,但在实现上存在很大的困难.

3、分布式光纤传感技术的应用与发展

由于分布式光纤传感技术能够实现大范围测量场中分布信息的提取,因而它可解决目前测量领域的众多难题,如:分布式温度传感器可用于大、中型变压器、发电机组和油井的温度分布测量,大型仓库、油库、高层建筑、矿井和隧道的火灾防护及报警系统等领域;分布式应力传感器可用于桥梁、堤坝等设施的安全检测,航空、航天飞行器等大型设备老化程度的检测,智能材料制备等领域。然而,为了实现快速、稳定、可靠及高精度的测量,仍需要进行多方面的研究。今后的研究重点也将主要放在以下几个方面:

① 实现单根光纤上多个物理参数(温度和应变)或化学参数的同时测量;
  ② 提高信号接收和处理系统的检测能力,提高系统的空间分辨力和测量不确定度;
  ③ 提高测量系统的测量范围,减少测量时间;
  ④ 新的传感机理的研究.【MechNet】

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top