近年来,WiMAX|0">
3.5系统容量准则
干扰对于WCDMA系统上/下行链路的影响,主要用有系统间干扰和无系统间干扰的相对容量损失表示。干扰对WiMAX系统的上/下行链路的影响,主要用频谱效率衡量。
WCDMA单系统上行链路容量,根据底噪抬升6 dB时用户数确定。WCDMA单系统下行链路容量根据中断概率为5%时用户数确定。
对于WiMAX系统负荷是75%。在每次仿真之后,都可以得到WiMAX系统每个链路的信噪比。再根据表1中信噪比和频谱效率的对应关系。得到系统所有链路的频谱效率平均值。
表1中,QPSK CTC编码中6、4和2分别表示重复编码的次数。
表1 WiMAX物理层1%PER(误包率)时的频谱效率 4、仿真结果
4.1 WiMAX系统对WCDMA系统的干扰
由前面的功率控制可以看出,由于WCDMA和WiMAX帧结构的不同,WCDMA在进行功率控制时要同时考虑WiMAX上/下行对其的干扰。
(1)WiMAX系统上/下行对WCDMA系统上行的干扰
为了便于比较,WiMAX系统上/下行干扰WCDMA系统上行的仿真结果如图4~6所示。 由以上结果可以清晰地看出:
WiMAX上行干扰WCDMA上行和WiMAX下行干扰WCDMA上行两种情况下的ACIR对WCDMA的容量都有影响。由图4可以看出,随着 ACIR的增大,WiMAX系统对WCDMA系统上行的干扰减小,WCDMA系统容量损失随之减小。要想保证WCDMA系统损失小于5%,要求WiMAX 上行干扰WCDMA上行和WiMAX下行干扰WCDMA上行的ACIR值分别为60 dB和95 dB。相对于标准设备情况下ACIR值分别提高了23 dB和50 dB左右。
在相同ACIR的情况下,随着WiMAX和WCDMA基站距离偏移量的由0增大为288.5 m和577 m时,WiMAX系统对WCDMA基站的干扰相应减小。由图5可以看出,随基站间距离增大,仿真曲线距离相距逐渐减小,说明干扰抑制改善效果逐渐减弱。
在WiMAX系统和WCDMA系统基站共站址的情况下,增大最小耦合损耗(MCL),看到WCDMA系统受到的干扰和容量损失相应减小(见图6)。原因是增大MCL相当于两系统基站之间增大了保护间隔。增加了干扰链路的链路损耗,从而降低了干扰。
(2)WiMAX系统上/下行对WCDMA系统下行的干扰
经过仿真得到,WiMAX上/下行对WCDMA下行的干扰造成的WCDMA系统容量的损失,在不同的系统布局下都小于3%。如果对设备指标加以限制,WCDMA系统容量的损失将近似可以忽略。
4.2 WCDMA系统对WiMAX系统的干扰
(1)WCDMA系统上行对WiMAX系统上行的干扰经过仿真得到,WCDMA上行对WiMAX上行的干扰造成的WiMAX系统频谱效率的损失,在不同的系统布局下都小于4%。
(2)WCDMA系统下行对WiMAX系统上行的干扰
从图7可以看出,随着ACIR的增大,WCDMA系统下行对WiMAX系统上行的干扰减小,WiMAX系统频谱效率损失随之减小。在相同 ACIR的情况下,随着WiMAX和WCDMA基站距离偏移量的增大为288.5 m和577 m时,由于WCDMA系统的干扰引起的WiMAX频谱效率的损失逐渐降低。 (3)WCDMA系统上行对WiMAX系统下行的干扰
经过仿真得到,WCDMA上行对WiMAX下行的干扰造成的WiMAX系统频谱效率的损失,在不同的系统布局下都小于2%。
(4)WCDMA系统下行对WiMAX系统下行的干扰
经过仿真得到,WCDMA下行对WiMAX下行的干扰造成的WiMAX系统频谱效率的损失,在不同的系统布局下都小于3%。
5、结语
从以上的分析可以确定在不同网络布局情况下,两系统之间共存对WCDMA系统容量和WiMAX系统频谱效率的影响。在共站情况下的WiMAX下行对WCDMA上行的干扰和WCDMA下行对WiMAX上行的干扰是最严重的两种情况。仿真中通过严格设备参数提高ACIR、增大地理偏移距离、提高 MCL的方法降低干扰到可以接受的水平。在实际的工程中,对于干扰严重的情况,还可以采用通过附加滤波器和线性化功率放大器、使用保护带宽等方法来减小系统间干扰。 |