微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > HSDPA流量和覆盖研究

HSDPA流量和覆盖研究

时间:09-30 来源:3GAPP 点击:

  摘要:通过研究分析HSDPA的链路预算、系统特性,并与传统的R99分组业务做比较,得到运营商最关心的HSDPA流量与覆盖的关系。

  一、 引言

  第三代移动通信系统的一个重要特点是业务上、下行链路的业务量的不平衡性,下行链路的业务量将普遍大于上行链路的业务量。高速下行分组接入(HSDPA)技术针对用户高速下行数据业务的要求,基于链路自适应调制技术和混合ARQ技术来获得更高的流量和高峰值速率、减少传输等待时间。

  由于采用新的技术,使得HSDPA在流量和覆盖上与基于R99协议的PS业务存在着一定的差别。本文将通过链路预算和系统仿真,研究HSDPA技术无线性能以及组网策略。

  二、 HSDPA关键技术描述

  与R99架构相比,HSDPA引入了短的传输时间间隔(TTI=2ms)、自适应调制和编码(AMC:Adaptive Modulation and Coding)、多码发射和快速物理层(L1)混合ARQ(HARQ:Hybrid Automatic Repeat reQuest),并将分组调度器从RNC移到Node B中,以在Node B中实现MAC-hs协议控制的快速分组调度。

表 1 HSDPA与R99关键技术对比


  HSDPA使用服务小区更新即硬切换。HS-PDSCH信道不支持软切换,因此没有切换增益。处于小区边缘的HSDPA用户可以使用硬切换或者使用CELL_DCH(HS-PDSCH)到CELL_DCH(DCH)状态迁移的方式进行小区切换。

  16QAM调制方式可以大大提高系统的频谱效率(约为QPSK的2倍)。

  AMC使得Node B能够根据UE反馈的信道状况及时地调整不同的调制方式(QPSK、16QAM)和编码速率,从而使得数据传输能及时跟上信道的变化状况,这是一种较好的链路自适应技术。

  HARQ是一种前向纠错FEC和重传相结合的技术。它可以根据链路的状况快速地调整信道的传输速率并实现FEC与重传的结合,物理层HARQ受高层控制。

  Bit Scrambling可以避免在传输中产生长"0"/"1"的情况,从而可以减少传输及接收错误,比特加扰不影响传输带宽。

  MAC-hs流控功能使得RNC发送到Node B的数据流量保持在一定的状态,不会因为Node B的缓冲不够而导致待传输的数据丢失。每当RNC有数据需要发送到Node B时,RNC会先发送请求到Node B,只有Node B的缓冲池有一定空闲空间时才允许RNC发送数据。

  三、 HSDPA链路预算分析

  由此,我们可以对预算过程进行分析,得到不同速率情况下的覆盖效果变化分析,如图1所示。在进行预算过程仿真之后,我们可以考虑利用仿真平台仿真得到较低速率HSDPA信道连续覆盖的覆盖距离,对HSDPA的城区覆盖情况进行评估。

图 1 小区平均最低的吞吐率和覆盖比例的关系图

  
在图 1中,可以看出当HSDPA业务信道的速率降到250~300kbps左右时,可以覆盖到密集城区的小区边沿,就是说可以形成100%的连续覆盖。根据实际可能的无线环境恰当设置正交因子,可以得到如图1所示的典型的小区最低平均流量和覆盖比例的关系变化图。当HSDPA覆盖率加大时,相当于UE会远离基站,此时需要HSDPA对承载速率进行调整,通过降低速率以满足UE对业务的质量要求,降低系统的流量。从图 1可以看到,当UE处于基站近点的时候,小区的HSDPA的流量明显上升,可以发挥出HSDPA的高速下载功能。当HSDPA用户处于小区边缘时,外来干扰变大,我们可以通过观察Ior/Ioc的变化,考察HSDPA用户在小区边缘时的系统性能。

  从图 2可以看出,当用户收到的外来干扰较小的时候,在保证一定的覆盖率的情况下,HSDPA支持的极限流量就越大。所以为了保证HSDPA的资源充分利用,通过接纳控制使得处于有利位置的UE获得HSDPA资源,对于远离基站、信道环境恶劣的UE,可以通过降低HSDPA的信息速率或者将信道切换到其他专用信道的PS业务承载来处理。

图2不同外来干扰对HSDPA流量/覆盖率的影响


  四、 HSDPA系统仿真分析

  由于HS-PDSCH使用SF=16的扩频因子,其处理增益要小一些,因此其系统覆盖半径比CS12.2k话音(SF=128)要小,但比PS384k(SF=8)大。基本上可以认为HSDPA的系统覆盖半径与R99的低速PS业务一致。

  通过系统仿真结果可以得到,HSDPA在低速业务时(例如250~300kbps),基本可以达到与12.2k语音业务的同心圆覆盖,这是因为HSDPA可以为一个链接提供较大的信道功率。城区建站一般的小区半径是700米左右,在这个范围内,可以认为HSDPA的低速业务是可以全网覆盖的。因此,本文没有给出具体的绝对覆盖半径,而是以覆盖率的方式探讨HSDPA的流量变化。

  随着信息速率的提高,调整站间距的同时还必须限制高速率HSDPA用户的范围,例如当速率达到500kbps时候,用户不应该远离基站,否则会造成加大信道功率,并对邻区用户造成较大干扰。

  图3分析了R99(384k)和HSDPA在覆盖与流量上的区别。图中红线代表R99的流量,由于码资源受限,因此在UE靠近基站时,R99的流量达到上限(7×384k)后就不会再增加,如果不考虑码资源受限,则R99的流量曲线见红色虚线。

  从图 3可以看到,在近点,HSDPA的流量远远优于R99。在45%半径左右的位置,HSDPA性能下降到与R99相仿的水平,当到70%,进入R99的切换区,因此R99获得切换增益,流量得到补偿,因此维持在一个比较稳定的水平。而HSDPA没有切换,因此在远端其流量将急剧下降。该图充分显示了与R99的DCH PS业务比较、HSDPA在近点流量上的优势以及在远点覆盖上的不足。
 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top