高话务密度区的网络优化技术
移动通信网络运行状况动态变化较大,受外界客观环境影响因素较多。
用户市场不断扩大,网络不停扩容。因此,网络优化是移动通信网络运行维护工作中的一个重要组成部分,其目的就是提高网络通信质量,改善服务形象,充分挖掘网络资源,使投资得到应有回报。目前随着技术进步,GSM网络上开通的业务种类越来越多,不仅包括话音,还会开通数据、图象等,向多媒体方向发展。这样,网络的维护质量要求也就越来越高,网络优化的任务越来越重。网络优化是在充分了解网络运行状态的前提下,通过各种技术手段,对网络中不合理的部分进行必要的调整,使网络达到最佳运行状态的过程。
高话务密度区的网络优化是各地区网络优化的重点,主要可以采取以下手段:
1.站址及设备优化。
站址选择在建网初期相对较为容易,主要是为解决无线覆盖问题。但在网络不断扩容的过程中,特别是已具相当规模的今天,覆盖问题只存在于极少数偏远郊区及市区的高楼大厦之间、地下室、大楼内部等地方,已不是主要问题。因此,站址选择的思路也发生了重大变化,以解决高话务区的高阻塞和盲点问题。由于目前一般市中心区域基站间距仅400m左右,其中有相当一部分基站为早期建设所设,天线高度、发射功率、站址位置等不能符合现在网络需求,需要根据具体地形大力寻找新站,对于部分大厦、娱乐场所及商业街则可通过增加微蜂窝来解决。
2.设备优化。
GSM网络在建网或扩容时,普遍存在周期短,速度快的现象。因此无论在工程中还是在规划中都留下一些质量问题,需要在优化中找出并解决。在优化过程中需注意以下设备问题:
(1)基站经纬度有误
在网络中经常发现部分基站的实际经纬度与规划中的经纬度不一致,甚至相差很大,造成此现象的主要原因是在选址中碰到困难,最后更改站址,但规划数据库中未能到得及时更新,仍按原规划方案设计邻区关系及进行频率规划,因而造成很多频率干扰、盲区及邻区参数不合理问题,对移动网络基础结构产生较大影响。
(2)天线水平角及方位角有误
此种问题在设备优化中经常发现,由于工程施工检验不严格或长时间工作后外部环境影响,造成天线方向角与规划设计不一致(具体现象:天线为0度角或反向发射、下倾角大于15度、水平角与设计偏差10度以上等)。再加上多次扩容后未及时进行后期网络优化,容易由此导致频率干扰、越区覆盖、盲区、覆盖区重叠而无主控小区等现象。
(3)分集接收天线间距过小,收发天线不平行
采用分集接收天线时,若收发天线间距在2m~5m时,则可达到理想效果,获得3dB左右增益。而有些收发天线的间距过小,在1m之内。这样很难获得分集接收的效果,影响接收质量。此外,由于收发天线不平行,将导致上下行接收质量差别较大,严重影响通话质量、切换成功率等指标。
(4)天线阻挡
很多天线在架设后,由于后期广告牌的设立、周围新建筑物的产生,造成部分扇区难以吸收应有话务量,虽然处在高话务区,但话务量却很低。通过对天线位置的重新调整,保证天线覆盖的合理性,以缓解周围小区的话务负荷,确保无线资源充分合理的利用。
(5)天线高度过高
在建网初期,因用户规模较小,一般采用大区制基站,使用高铁塔,以增加覆盖范围。但在经过数期扩容后,特别市区基站密度较大,需进行从新天线优化,特别是天线的高度应下降,否则会对周围多个基站造成干扰,同时也造成越区覆盖、切换成功率下降、掉话率上升等现象。
3.频率优化。
根据现有网络高话务高密度的特点,原有的各类频率规划方案(一般4*3、5*3频率复用方式)已不能适用,由于频率资源对移动通信发展制约很大,因此,如何开发新的频率资源以及进一步提高现有频率资源利用率,尽可能增加系统容量,已成为网络规划与优化中的重点。
跳频技术可以实现GSM系统频率的紧密复用,从而为大幅度提升网络容量提供了便利条件。跳频的频率分集效果改善了网络质量和话音质量,虽然跳频技术使小区间同频或邻频干扰源可能增加,但来自不同小区或频率时隙干扰的相关性很小,干扰能得到均化或克服。跳频的干扰分集使系统的干扰分散和平均,可方便地实现MRP、1×3、1×1等紧密频率复用方案。
现在网络中较多使用MRP技术进行新的频率规划,提高系统频率利用率。其基本原理就是把所有可用载频分成几种不同的组合,每一组合作为独立的一层,代表不同的复用组。做频率规划时逐层分配载频,不同层的频率采用不同的复用方式,频率复用逐层紧密,也就是说在整个网络中采用不同的复用类型。
采用MRP技术必须采
- 数字集群通信系统技术 (01-18)
- 卫星接收中场强图与接收天线的选择关系(01-18)
- 移动通信中的天线技术 (01-25)
- 移动通信中的天线技术(3) (01-25)
- 无线通信智能天线技术的未来发展趋势(02-22)
- MIMO无线技术研究(02-27)