微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 多模智能移动终端中GSM和蓝牙的设计

多模智能移动终端中GSM和蓝牙的设计

时间:03-06 来源:C114 点击:

,主要注意2阶和3阶分量, 它们一般落在蓝牙的带内,要注意按照上文的分析,给予足够的衰减。

在实际设计中应该使蓝牙和GSM子系统的频带滤波器各自在对方的带内分别达到35dB和26dB以上的衰减,取得了较好的效果。

然而,一味引入更大衰减的频带滤波器也不是最好的选择,这样会增大带内有用信号的插损,降低了实际的发射效率,增加了功耗,并可能带来输出功率不符合型号认证的问题。所以从前面的分析可知,设法降低两个子系统天线的耦合度,是一个更好的办法。

本系统将两个子系统和天线放置得尽可能远,以增加物理空间损耗。同时,在天线匹配电路的设计上,在蓝牙端尽量采用高通滤波网络来匹配,而GSM子系统的天线匹配策略采用低通网络的方式,这样达到了附加的抑制效果。有设备条件或者和专业天线厂家合作的情况下,还可以调整天线的极化和方向图,比如让GSM的天线处于XY平面,而蓝牙天线极化方向处于XZ平面,在测试方向图时注意观察和调整,同时在设计天线摆放位置和电流流向时加以恰当考虑,也能对降低耦合因子有一定效果。选用尽量窄带的天线也能减小两个子系统天线间的耦合因子,但这会提高天线设计的难度。如果有条件可进行仿真和计算,但是在实际开发过程中,这些都以工程测试的结果为准。

4.系统级共存设计考虑

对于这两个子系统的供电设计,在开发过程中首要考虑的是如何降低这两个收发器之间开关噪声通过电源系统造成的耦合,然后是大功率的GSM发射时造成的电源瞬间压降对蓝牙系统的影响,最后就是地弹噪声的处理。在各个电源处合理采用退耦电容是常识,而对于GSM子系统,因为对电源瞬态响应要求高,需要大幅加宽电源线,并提供大的电容做稳压。对于蓝牙子系统,为了降低电源上的瞬态压降,也需要尽量降低电源线阻抗,并提供大电容稳压。在便携系统设计中,走线密度往往过高,造成单独电源面的制作比较困难,所以要注重电源线的布线,让它和主地之间的回流途径尽可能靠近,如果电源线能走在主地的邻接层,其EMI特性会更加理想。对于蓝牙芯片供电,除了要采用高PSRR的LDO,还要注意这个稳压器的布线优化,并增大它的输出电容,本文的做法是实际的电源优化要在大功率工作的同时进行,在工程实践中调整。为了减小地弹噪声,还要注意主地层的完整,以及前文提到的单独做两个射频地或者其它分割策略。

对于系统频率源的共享和分配,考虑到小体积的智能移动终端电路板面积极为紧张,因此最好能共享一个频率源。此时要防止共源造成的噪声和杂散传导耦合,因此,必要的滤波和匹配是不可或缺的。同时,要注意两个子系统对频率源的稳定性要求,通常,GSM子系统的频率源在同步信道解调成功后是受控的,而蓝牙子系统只是利用频率源产生本振后,和同步信道简单匹配来判断设备是否同步,并没有特别的AFC机制来控制频率源,所以,当GSM系统为了省电需要关闭GSM输入的时钟源而蓝牙仍需要稳定工作时,还需要设计一个简单合理的门控时钟来提供请求与仲裁机制,以保证两者都可以按需使用时钟,而两者都不用时,系统能完成时钟的关断,同时,GSM不工作时还需要保持时钟源的稳定性,以满足蓝牙的初始时钟稳定性要求。

结语

本文的智能终端设计,在常规的手机空间中满足了GSM和蓝牙型号认证发射和接收的各项指标要求,在GSM最大功率发射时,也能在5~7米的距离内用蓝牙耳机清晰地通话,通过以上思路和措施,合理完成了这个双模系统的共存性设计。本文总结了开发过程中的思考方法和工程经验,希望起到抛砖引玉的作用,给无线便携系统设计工程师提供一些参考。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top