微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > Wi-Fi收发器的电源和接地设计

Wi-Fi收发器的电源和接地设计

时间:10-22 来源:Maxim 点击:

射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地基本原则的基础上进行。本文探讨了相关的基本原则,并提供了一些实用的、经过验证的电源布线、电源旁路和接地技术,可有效提高RF设计的性能指标。考虑到实际设计中PLL杂散信号对于电源耦合、接地和滤波器元件的位置非常敏感,本文着重讨论了有关PLL杂散信号抑制的方法。为便于说明问题,本文以MAX2827 802.11a/g收发器的PCB布局作为参考设计。

一:电源布线和电源旁路的基本原则

设计RF电路时,电源电路的设计和电路板布局常常被留到高频信号通路的设计完成之后。对于没有经过深思熟虑的设计,电路周围的电源电压很容易产生错误的输出和噪声,从而对RF电路的系统性能产生负面影响。合理分配PCB的板层、采用星形拓扑的VCC引线,并在VCC引脚加上适当的去耦电容,将有助于改善系统的性能,获得最佳指标。

合理的PCB层分配便于简化后续的布线处理,对于一个四层PCB (WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。第二层采用不受干扰的地平面布局对于建立阻抗受控的RF信号通路非常必要,还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。

大面积的电源层能够使VCC布线变得轻松,但是,这种结构常常是导致系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。反之,如果使用星形拓扑则会减轻不同电源引脚之间的耦合。图1给出了星形连接的VCC布线方案,该图取自MAX2826 IEEE 802.11a/g收发器的评估板。图中建立了一个主VCC节点,从该点引出不同分支的电源线,为RF IC的电源引脚供电。每个电源引脚使用独立的引线,为引脚之间提供了空间上的隔离,有利于减小它们之间的耦合。另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。

图1. 星形拓扑VCC布线


使用星形拓扑VCC引线时,还有必要采取适当的电源去耦,而去耦电容存在一定的寄生电感。事实上,电容等效为一个串联的RLC电路,如图2所示,电容在低频段起主导作用,但在自激振荡频率(SRF) 之后,电容的阻抗将呈现出电感性。由此可见,电容器只是在频率接近或低于其SRF时才具有去耦作用,在这些频点电容表现为低阻。图3给出了不同容值下的典型S11参数,从这些曲线可以清楚地看出它们的SRF,还可以看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。

图2. 电容器的等效电路

图3. 不同频率下的电容器阻抗变化

在VCC星形拓扑的主节点处最好放置一个大容量的电容器,如2.2µF。该电容具有较低的SRF,对于消除低频噪声、建立稳定的直流电压很有效。IC的每个电源引脚需要一个低容量的电容器(如10nF),用来滤除可能耦合到电源线上的高频噪声。对于那些为噪声敏感电路(例如,VCO的电源)供电的电源引脚,可能需要外接两个旁路电容。例如:用一个10pF电容与一个10nF电容并联提供旁路,可以提供更宽频率范围的去耦,尽量消除噪声对电源电压的影响。每个电源引脚都需要认真检验,以确定需要多大的去耦电容,实际电路在哪些频点容易受到噪声的干扰。

良好的电源去耦技术与严谨的PCB布局、VCC引线(星形拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个"无噪声"的电源是优化系统性能的基本要素。

二:RF接地和过孔设计的基本原则

地层的布局和引线同样是WLAN电路板设计的关键,它们会直接影响到电路板的寄生参数,存在降低系统性能的隐患。RF电路设计中没有唯一的接地方案,设计中可以通过几个途径达到满意的性能指标。可以将地平面或引线分为模拟信号地和数字信号地,还可以隔离大电流或功耗较大的电路。根据以往WLAN评估板的设计经验,在四层板中使用单独的接地层可以获得较好的结果。凭借这些经验,用地层将RF部分与其它电路隔离开,可以避免信号间的交叉干扰。如上所述,电路板的第二层通常作为地平面,第一层用于放置元件和RF引线。

接地层确定后,将所有的信号地以最短的路径连接到地层,通常用过孔将顶层的地线连接到地层,需要注意的是,过孔呈现为感性。过孔的物理模型如图4所示。图5所示为过孔精确的电气特性模型,其中Lvia为过孔电感,Cvia为过孔PCB焊盘的寄生电容。如果采用这里所讨论的地线布局技术,可以忽略寄生电容。一个1.6mm深、孔径为0.2mm的过孔具有大约0.75nH的电感,在2.5GHz/5.0GHz WLAN波段的等效电抗大约为12/24。因此,一个接地过孔并不能够为RF信号提供真正的接地,对于高品质的电路板设计,应该在RF电路部分提供尽可能多的接地过孔,特别是对于通用的IC封装中的裸露接地焊盘。不良的接地还会在接收前端或功率放大器部分产生辐射,降低增益和噪声系数指标。还需注意的是,接地焊盘的不良焊接会引发同样的问题。除此之外,功率放大器的功耗也需要多个连接地层的过孔。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top