Wi-Fi收发器的电源和接地设计
时间:10-22
来源:Maxim
点击:
射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地基本原则的基础上进行。本文探讨了相关的基本原则,并提供了一些实用的、经过验证的电源布线、电源旁路和接地技术,可有效提高RF设计的性能指标。考虑到实际设计中PLL杂散信号对于电源耦合、接地和滤波器元件的位置非常敏感,本文着重讨论了有关PLL杂散信号抑制的方法。为便于说明问题,本文以MAX2827 802.11a/g收发器的PCB布局作为参考设计。
一:电源布线和电源旁路的基本原则
设计RF电路时,电源电路的设计和电路板布局常常被留到高频信号通路的设计完成之后。对于没有经过深思熟虑的设计,电路周围的电源电压很容易产生错误的输出和噪声,从而对RF电路的系统性能产生负面影响。合理分配PCB的板层、采用星形拓扑的VCC引线,并在VCC引脚加上适当的去耦电容,将有助于改善系统的性能,获得最佳指标。
合理的PCB层分配便于简化后续的布线处理,对于一个四层PCB (WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。第二层采用不受干扰的地平面布局对于建立阻抗受控的RF信号通路非常必要,还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。
大面积的电源层能够使VCC布线变得轻松,但是,这种结构常常是导致系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。反之,如果使用星形拓扑则会减轻不同电源引脚之间的耦合。图1给出了星形连接的VCC布线方案,该图取自MAX2826 IEEE 802.11a/g收发器的评估板。图中建立了一个主VCC节点,从该点引出不同分支的电源线,为RF IC的电源引脚供电。每个电源引脚使用独立的引线,为引脚之间提供了空间上的隔离,有利于减小它们之间的耦合。另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。
图1. 星形拓扑VCC布线 使用星形拓扑VCC引线时,还有必要采取适当的电源去耦,而去耦电容存在一定的寄生电感。事实上,电容等效为一个串联的RLC电路,如图2所示,电容在低频段起主导作用,但在自激振荡频率(SRF) 之后,电容的阻抗将呈现出电感性。由此可见,电容器只是在频率接近或低于其SRF时才具有去耦作用,在这些频点电容表现为低阻。图3给出了不同容值下的典型S11参数,从这些曲线可以清楚地看出它们的SRF,还可以看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。
|
- 便携时代风起云涌,Wi-Fi携手微型硬盘引领潮流(11-18)
- LVDS技术及其在多信道高速数据传输中的应用(01-15)
- 多模智能移动终端中GSM和蓝牙的设计(03-06)
- 采用软处理器IP规避器件过时的挑战(05-04)
- 一种无线语音传输系统设计方案(08-28)
- USB2514i USB HUB及其应用(07-25)