微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 打造可靠的IP城域核心网

打造可靠的IP城域核心网

时间:01-13 来源:通信世界 点击:
路由器是城域IP网络的核心设备。

  随着城域网的发展,特别是业务需求的丰富,对路由器的要求越来越高,城域核心网的技术也日益丰富。

  作为承载网络,随着NGN、IPTV等QoS敏感型业务的出现,IP核心网络的服务质量控制和网络可靠性指标都成为城域核心网络备受关注的两个方面。而作为城域网,上联出口是多方向的,可以由不同运营商提供选择,也可以由不同服务品质的网络提供选择,无论如何,都需要城域网提供有效的业务疏导能力。

  网络可靠性设计

  城域核心网络目前多采用聚合型网状的结构设计,因为到目前为止,城域网的流量还是汇聚型的。P2P的业务可能会逐步改变城域网的流量模型,等到P2P的流量成为主导时,城域核心网络的结构模型也将随之改变。

  如果每个节点采用双上联方式连接到两个不同的上游节点,既可以保证链路的冗余,又可保证上游节点间的冗余。拓扑上实现完全的双备仅仅是可靠性设计的一个必要条件,如何保证在链路或节点失效后快速地切换到冗余的链路或节点上,是保证网络可用性指标的一个重要环节。

  保护切换的时延主要由几部分组成:故障检测时延、故障信息传递时延、选择路径计算时延以及路径更新时延。

  链路的故障检测时延与所采用的传送技术有关。SDH在故障的检测和传递方面表现得最为优秀,因此,对于IP网络而言,POS接口的故障检测时延非常小,而Ethernet接口的故障检测时延却没有保障,特别是当路由器间以太链路经过一些传送设备传递(如光电转换器、交换机)时,链路的状态有时甚至难以反映路由器的状态。这时,路由器只能依靠动态路由协议的HELLO机制完成对链路状态的监听。路由协议的HELLO周期一般为10?30秒,三个周期的无响应才能确定链路的中断,所以依靠路由协议检测链路故障时延迟非常大。BFD是新近推出的一个用来缩短检测周期的技术,可以将检测周期缩短到微秒量级。检测周期的设定需结合使用环境确定。

  故障信息传递时延与所需传递的范围有关。IGP会在IGParea内部flood链路和节点的故障信息,而以太网只有在运行STP时才会在STP域内传递,因为传递的目的是让相关节点作出新的路径选择。这些网络都不可以将规模做得过大,以避免网络故障信息传递时延过长,造成全网信息的不同步。

  选择路径计算时延则与所采用的算法有关。

  路径更新时延是指路径更新信息传递的时延。

  业务疏导能力设计

  动态路由是IP网络技术的一个核心技术,是IP网络生存到今天的一个重要保障。动态路由技术为IP网络提供了非常良好的自愈能力,其中,外部路由协议(BGP)更为运营商提供了良好的调整网络流量流向的能力。

  业务疏导是ISP经常要面对的一个问题。当ISP上联多个运营商时,ISP要根据自己的业务需求、与其他运营商的互联资费等因素调整自己的互联策略。在ISP做内部互联时,也需要考虑不同的网络平面有不同的承载能力。

  ISP与其他运营商互联时可采用的主要是BGP。ISP做内部互联时,除BGP外,还有很多种疏导方法可供选择,包括策略路由(或称为基于转发的路由)、流量工程(TE)、虚拟专网(VPN)。

  流量工程对于业务的控制性很强,主要用于域内/网内的流量疏导,对于域间/网间的流量,由于其技术前期在跨域解决方案上比较滞后,同时也因为流量工程无法在运营商之间实施,所以在域间/网间的流量疏导上鲜有应用。

  VPN是用来提供企业专网服务的技术,可以用来构建虚拟网络。虚拟网络技术也可以用来很好地控制流量流向,但是,由于城域网主要承载的互联网业务的开放性与虚拟网络所要求的封闭性有着本质的区别,所以VPN方案的实施难度非常大。同时由于MPLSVPN对于互联网业务的承载能力比较有限,特别是对互联网的路由表承载能力有限,因此,较少应用于互联网业务的承载。

  BGP是最通行的疏导网间流量的方案,由于其开放性和通用性,它通常是运营商之间沟通的一个桥梁。BGP的流量疏导方法,如AS-PATHPREPEND、MED、LOCAL-PREFERENCE几乎是所有互联网运营商都在使用的手段。策略路由则因其单点控制的简便性以及可以根据源地址进行控制的特异性也被较多地应用,但因其是在转发层面上进行控制,对于网络设备的负荷压力远高于BGP方案,同时,因其单点控制所带来的全网路由选择的不一致性使网络存在路由循环等隐患,策略路由很少应用于大型网络或者网络核心。

  服务质量保证

在核心网络中,超量的保证带宽资源是保证业务服务质量最简便的手段,但它所带来的网络资源开销是否合理、是否经济一直是人们争论的话题。无论如何,DIFF-SERVE可以为集约式经营提供一个很好的手段来保证服务质量

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top