微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 车用线束与CAN总线控制车内通信技术动向

车用线束与CAN总线控制车内通信技术动向

时间:11-09 来源:3721RD 点击:

电弧放电

其中最重要也是最不易解决的是电弧放电。电弧放电是指通电中,当触点或端子分离时发生的放电现象。在42V场合,这时称为稳定电弧就会发生。这种电弧与14V电源电压相比,延续时间长,其放电能量也非常大。电弧的中心温度高达几千度,这是非常危险的现象。

特别是插接件拔出时发生的电弧放电,由于与用户直接接触,因此尽早采取相应保护措施。以下介绍如何防护插接件的电弧放电的措施。

●采取最优化的端子材料

●有效分散端子双触点的电弧放电能量

●改进插接件壳体以提高插接件的拔出速度

●采用磁铁消除电弧放电

其中,在大中电流通过场合,被认为对电弧放电最有限制效果的是采用磁铁。这是指,通过磁场的作用,使电弧发生扭曲,增加触点之间的间隙也具有同样的效果。例如Fujikura公司就开发了这种技术,通过附加磁场方法与使磁通量密度最优化,成功地使电弧放电能量稳定下降。

该公司除了线束部件外,还开发了熔断器与搭载继电器的42V用电源

箱(R/B,J/B)或42V三相同步电机用线束总成等。采用R/B、J/B 42V电源箱,特别在发动机舱容易沾水的地方,漏电、电蚀等影响尤为显著,因此必须适当规定电路之间距离。当采用线束总成时,限制电磁噪声是重要课题,因此要开发专用屏蔽式线束及有效防水的插接件。所以说,在采用42V电压方面,确实为解决有关课题作出了努力,但是由于采用屏蔽结构与防水结构而使重量增加。为此,在采用42V电源时必须有针对性地采取措施,对不必要部件要加以剔除,而且在采取措施方面,也要讲究保护程度,分门别类,仔细分析。这是今后重要的思路,不过,迄今42V只应用于高级轿车上,而用于普及型轿车方面的开发还刚刚开始,因此,当应用42V电气系统时必须对整车的成本作平衡分析,这也可以说是42V技术的共同课题。

迄今,有关42V的研究开发的世界团体是麻省理工学院(MIT)的咨询机构。日本Fujikura在1999年开始加入该组织,并且参与活动。目前,日本、欧洲与美国通过合作正在制定42V标准。可以期待,由于制定42V标准,将降低部件成本,以加速42V电源的普及。

实施42V电气系统将从双电压(14V、42V)结构系统起步,逐步过渡到单一42V电气系统,需要多长时间才能完成由14V向42V转变,取决于汽车电子技术的发展和消费者承受能力。

车内局域网(LAN)通信协议的现状与发展动向

随着电子技术在汽车上广泛应用,导致车身布线庞大而复杂。据统计,一辆采用传统布线方法的高级轿车中,其导线长度可达2km,电气接点可达1500个,因而汽车网络技术应运而生,成为汽车技术发展的一个方向。

很早以来,多路通信技术被看成解决车用线束不断增加的方法。世界各大汽车制造公司都制定专用标准。可是,多路通信技术由于价格昂贵只用于高级车上。近年来,车用电子系统不断增加,数据输送速度不足,并且小型经济型车也要求向高功能方向发展,再加上线束不断增加,形成"肥大化",因此,以此为背景,自2000年开始,在国外轿车上开始使用控制器局域网(CAN)的标准通信协议。

现在,最多使用的通信协议就是高速CAN,其中最重要的局域网应用于动力传动系统与部件车身系通信。控制器局域网(CAN)的特点是,事件触发器(Event trigger)、CSMA/CA方式(如果总线空载,则所有电控单元均能发出信号,而当信号冲突时,让高优先度信号先发出,然后再是其他信号发出)。当网上信息量增加时,就很难保证响应时间和预测性。在现代高级轿车上设有70个以上电控单元,由于网络上信息量有不断增加的趋势,所以网络加以分割,在每一个车身系或动力传动系分别设有网络,只有必需的数据通过网间连接器(gateway)进行转接(在车辆内应用二个通信协议)。

以下概要介绍车身系、动力传动系、多媒体系统及用于安全系统的车内局域网(附表)。

1.车身系

(1)低速控制器局域网CAN(Controller Area Network.~125kbps)这是CAN的低速版本。其构成与高速CAN基本相同,但是在双线式总线中,即使单侧发生故障(短路、断线)仍然继续通信。导线介质是铜线,使用单线或双绞电线。

(2)LIN(Local Interconnect Network,~20kbps)

LIN是局部互联网,这是车身系统低速通信专用的通信协议,使用成本低(I/F为通用型的UART),主/从方式(采用单个主控制器/多个从设备的方式)。Rev.2.0规格已经公布(2003年9月),导线采用铜线(单线)。

2.动力传动系

(1)高速控制器局域网(Controller Ar

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top