微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波射频行业新闻 > 揭秘全球最大“超级天眼” 定位技术源自西电

揭秘全球最大“超级天眼” 定位技术源自西电

时间:10-17 来源:西部网 点击:

揭秘全球最大“超级天眼” 定位技术源自西电

9月25日,有着"超级天眼"之称的全球最大500米口径球面射电望远镜FAST在贵州平塘县正式启用。FAST作为中国自主创新的世界上最大的天文望远镜,从概念到选址再到建成耗时22年,为我国天文学跻身世界一流创造了条件。而这只"超级天眼"的创新设计方案为西安电子科技大学首提,"超级天眼"的眼珠定位技术也是源自西电的智慧。

1、创新设计方案西电首提 馈源系统由万吨级降至30吨

1993年,在日本京都召开了第23届国际无线电科联大会,包括中国在内的10国天文学家联合发起了建造接收面积达一平方公里的"新一代大射电望远镜计划"倡议。为达到这个硬指标,又要工程上可实施、造价上可接受,像美国阿雷西博射电望远镜那样,利用喀斯特地貌建造单口径射电望远镜就成为了必由之路。因此,建造新一代望远镜的第一步,便是在喀斯特地形上寻找一个口径为500米的自然天坑。

1995年,中国天文学家终于在贵州南部找到了两个这样的位置,其中之一就是现在FAST项目所在地,贵州省黔南州平塘县克度镇金科村的大窝凼。这里不但有世界上最佳的喀斯特地貌,像超大型碗一样的500米口径天坑;这里还拥有天文观测必需的较为洁净的电磁环境。这一年,第三届国际大射电望远镜工作组会议也因此选在贵州召开,在这次会议上,西安电子科技大学茅於宽教授关于圆柱表面相位阵、王家礼教授关于低造价反射面的报告,尤其是段宝岩教授所作的关于大射电望远镜馈源支撑的光机电一体化创新设计的报告,受到了与会国内外专家的高度关注。

这一方案的核心就是将原阿雷西博方案中,用于支撑线馈源的重达1000吨的钢结构,用计算机伺服系统控制的从6个塔顶伸出的6根大跨度的柔索来取代。同时,布置3台激光测距仪实时获取馈源的实际位姿,通过6索长度的自动调整,将馈源调回到电性能所允许的误差范围之内。"新方案不仅可将馈源支撑结构系统的自重降至约30吨,工程实施和造价变得可行,还克服了阿雷西博方案中结构稳定性方面的不足。"段宝岩解释说,如果新一代大射电望远镜阵照搬阿雷西博的设计方案,将会出现三个难题:一是工程造价太高,远远超过国家社会对新一代大射电望远镜的接受程度;二是纯机械跟踪控制系统的精度低;三是工程难度大,500米口径时悬空背架的重量理论上将近万吨,工程实施难度极大。

新方案以光机电一体化技术代替了传统的纯机械技术,以软件代替了硬件,结构形式大大简化,降低了工程造价,使大射电望远镜阵工程的实现成为可能,当即引起了国内外同行专家的广泛关注与浓厚兴趣,被同行称为"变革式的创新设计"。随后,段宝岩担任了由国家天文台南仁东研究员为主任的中国大射电望远镜推进委员会工程预研究组组长,带领西电团队致力于关键技术的突破。这一光机电一体化馈源索支撑方案,与利用贵州喀斯特地形建造射电望远镜、创新性的主动球反射面一起,被誉为FAST工程的三大创新。

2、定位技术源自西电 确保精度不超过4毫米

FAST坐落在一个球形洼坑中。如果说球形洼坑是这只"观天巨眼"的"眼窝",那么由悬索支撑的馈源舱与馈源就是"观天巨眼"的"眼珠"。段宝岩表示,FAST实际使用的馈源舱装置虽然与西电50米模型略有不同,但核心原理却是一致的,那就是利用Stewart平台对馈源进行粗精两次调节。可以说,FAST的"眼珠"定位技术正是源自西电。

"创新设计方案中,我们首次将动态悬索应用于望远镜馈源的结构支撑,解决的主要是工程实施和造价问题,但如何突破关键技术,进而实现这个射电望远镜要求的总体性能,就成为了一个很大的挑战。"段宝岩介绍说,新方案克服了阿雷西博方案的弱点,但对工程控制却提出了更高的要求。由于由悬索和馈源舱组成的舱索结构,具有非线性、大滞后、大惯性和弱刚度等特性,且在工作中难免受到风荷等外界干扰,仅靠悬索的控制很难使馈源舱达到指标要求的毫米级动态定位精度。鉴于此,段宝岩团队又提出了粗、精两级调节来实现馈源高精度动态定位定姿的方案。首先通过6根悬索对馈源舱实现粗调节,再通过安装在馈源舱内的Stewart平台实现精调节。Stewart平台上又分布了多个馈源,所以在提高定位精度的同时,还可实现多波段观测。段宝岩团队在研究中首次提出了并联宏——微机器人概念。宏机器人系统为6根悬索驱动的馈源舱,完成馈源的大范围跟踪,保证馈源舱的误差在50厘米内;微机器人为6自由度Stewart平台,实现馈源的精确定位,也就是4毫米。

据介绍,对FAST馈源舱的粗精两级调节是项目的关键技术之一,研究中碰到的难题一个接着一个。比如,粗精两级调整的动力学耦合与

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top