多路照明LED调光控制电路的设计与实现
多路照明LED调光控制电路的设计与实现
1 引言
照明技术在过去的一百多年里,经历了三个重要的发展阶段:白炽灯、荧光灯和HID灯。LED由于环保、寿命长、光电效率高等众多优点,近年来在各行业应用得以快速发展。白光LED的发光特性有这样的特点:白光LED发光强度由驱动电流决定。当LED两端电压发生波动时,流过发光二极管中的电流变化较大,而发光二极管的发光强度等比驱动电流,因此驱动电流的好坏直接影响LED的发光质量。
很多地方的照明LED都是多路LED来共同工作的,并且为了能够实现节能和配合调光消除阴影的目的,需要对多路LED进行调光,文章给出了一种控制多路调光的方法。
2 整个系统的设计思路
图1为整个系统的设计框架图,计算机通过串口通信发送调光信号,单片机接收到信号之后,经过内部运算,产生控制信号并发送给调光电路,调光电路再把驱动信号发送到多路照明LED,实现计算机控制多路LED的亮度调节。其中多路调光电路的设计是本篇的关键,多路调光采用的是C语言编程,先是在Proteus中仿真,然后搭建实际电路。
图1 系统框架图
3 多路调光电路的设计
3.1 多路控制的设计
多路控制方法:多路的控制是采用十六选一模拟开关CD4067来实现的,CD4067的引脚如图2所示。当需要调节某一支路的时候,只要选通此支路进行调节就行了,此时,其它支路不受影响。试验中采用两个CD4067,一个作为控制各个支路的传输路径,另一个作为反馈信号的传输路径。两个开关同时选通一个支路,并且只能选通那一路。
图2 调节工作电流方式的多路控制流程
3.2 调光电路设计
由于LED的亮度与正向电流成正比,因此采用调节电流来改变亮度。通过调节电流来调节LED亮度的方式有两种:(1) 调节工作电流方式;(2) 脉宽调制(PWM)方式。
3.2.1 调节工作电流方法
如图2所示,单片机给十六选一的芯片CD4067送去PWM信号,CD4067响应单片机所发出的信号,选通后面对应的支路,把PWM信号经过RC积分电路产生一个电压作为场效应管2SK1058的栅极电压,由于场效应管2SK1058的电流是由栅极电压控制的,所以LED的电流是由单片机产生的PWM信号控制的。为了实现稳定输出,电路中增加了一个反馈电路,这个反馈电路的给定值就是单片机控制数模转换器产生的给定电压值。
3.2.2 脉宽调制方式
脉冲宽度调制(PWM)方式:通过人眼不易察觉的频率快速开关LED,给人一种LED总是亮的假象。开关时间比率决定了流过LED的平均电流,从而决定了其亮度。脉宽调制方式和调节工作电流方式的主要区别是,没有采用RC积分电路,采用IFR830代替2SK1028,通过快速控制IFR830的通断,使得LED电流是一个幅值恒定,频率很快的脉冲电流,这样LED的平均电流决定了LED的亮度,控制流程如图3所示。
图3 脉宽调制方式的多路控制流程
4 实验分析
由于采用两种调光方法,所以实验方案按照基于两种调光方法的多路控制来进行。
4.1 基于调节工作电流方式的多路控制
由于CD4067芯片可以带动十六个支路,做实验的时候取代表性的三个支路进行控制,通过设置三个支路的电流值,使这三个支路达到各自的亮度。但是由于不知道LED电流值也DAC0832输入值之间的关系,所以进行实验得到它们之间的关系,然后就可以对通信接口进行编程,使得计算机界面的输入值能够和LED电流对应上。
在计算机操作界面上,对第一路的DAC0832输入为100,第二路为200,第三路的电流值为255,测得对应支路LED的电流值为54mA、106mA、134mA,对应2SK1058的驱动波形分别图4所示。
图4 驱动波形
可以看出,随着DAC0832输入的增大,PWM的占空比越来越大,对应的LED电流值也在不断增大。为了得到它们之间关系,通过不断改变程序的方法,来测试多个DAC0832的输入和关键点电压值(考虑到0~100之间为非线性区,所以从100开始取值),测得的数据如表1所示。
表1 测量得到N-I数据
绘出N和I之间的近似关系曲线,如图5所示。从图中可以看出,DAC0832的输入和LED电流值是基本上成正比例关系的,可以近似得到他们之间的关系:Y=0.53X+1.09,其中Y表示LED的电流值,单位为mA,X表示DAC0832的输入N。根据这个关系,我们可以设定程序,使得在计算机操作界面上输入值转化为对应的DAC0832值,这样就能够控制LED的电流,在很宽的范围内调节LED灯的亮度。
图5 N-I曲线
4.2 基于脉宽调制方式的多路控制
同样,考虑到CD4067是十六选一开关,没必要对十六路进行控制,拟定采用三个支路来代表整个电路的控制过程。由于控制
- LED PWM调光方法探讨(01-31)
- LED照明产品认证问题及其对策(04-24)