基于D类音频系统中斩波运放电路的设计
关,减小对输出极点的影响。
主运放采用全差分折叠式cascode结构,在Class-D的结构中,由于输出功率MOSFET大电流的频繁开启,产生的电磁干扰(EMI)会在电源上形成很强的纹波,在实际应用中发现当芯片工作在5V的电源电压下,EMI引起的电源波动能达到±2V,全差分结构既可以提高运放的电源抑制比和共模抑制比,减弱电源噪声和共模噪声的影响,而且避免了镜像极点,因而对于更大的带宽仍能表现出稳定的特性。
为了提供更高的增益和电压输出摆幅,在fold-cascode后加入共源运放输出级。采用二级运放后.对运放的频率稳定性进行分析。暂时不考虑斩波开关的影响,可以推断该电路至少有三个LHP极点,它们分别是miller补偿电容引入的主极点Wp1,输出滤波电容产生的输出极点Wpout。为第一非主极点,以及folded-cascode(MN1的漏端、MN3的源端)引入的非极点Wp3,三者之间的关系为Wp1<Wpout<Wp3。另外从电路可以看出,在共源输出级产生了一个低频的RHP零点,通过引入miller补偿电阻将此零点从右半平面移动到左半平面并抵消第二极点。为了进一步减小高频干扰,系统输出级通过电容接地,滤除高频信号。
共模反馈电路由MN7~MN10、MP10-MP12构成,输入一端接VDD/2的基准电压,另一端接主运放的共模输出,共模检测电路由电阻和电容构成.经过误差放大后调控主运放的偏置电流。
仿真结果及版图设计
在SMICO.35微米N阱工艺下.利用cadencespectre工具对本文所设计的电路进行了仿真分析。其中,各器件的工艺参数为典型情况,电源电压5V,输入信号为幅度10uV,频率为1KHz的标准正弦波,斩波频率fch=150K,仿真波形如图5和图6所示。
图5运放的幅频~相频特性曲线
图6斩波输出波形
从图5可以看出,在典型情况下,该运放的主极点在10HZ以内,相位裕度75度左右.能充分保证运放在各个comer条件下的稳定性。从输fn波形来看,斩波引起的残余电压尖峰也有了明显的改善。表1为运放的开环仿真结果。
表1运放开环仿真结果
该电路的版图采用SMIC0.35um工艺规则设计并对版图进行优化,衬底接地采用全封闭的doublegardring,有效降低了衬底的耦合噪声,差分对采用哑栅共质心匹配降低输入电压失调。另外,为了减小外围电路对运放的干扰,将后后级的滤波电容分散在运放电路的周围,优化后的版图面积为0.24mmx0.34mm,概貌如图7。
图7版图布局
结论
D类音频功放的1/f噪声和电压失调对信号的失真和噪声性能产生直接的影响,特别是在输入信号为零时的背景噪声最为明显,通过采用全差分斩波运放电路和T/H解调技术,有效地降低了系统的低频噪声和电压火调。流片后的对芯片的测试表明,该电路使Class-D的噪声性能有了很大的改善。
- 音频系统应用中的“POP”噪声以其常用解决方法(12-01)
- 20位单片音频数模转换器PCM63P (01-22)
- TDA2030音频功率放大电路(02-07)
- 适合音频扩展基座设计的完整音频解决方案(06-03)
- 基于DPPC2006的数字音频功率放大器(05-05)
- 新型人机对话接口与音频数据转换器技术及选用(05-23)