微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 自动归零运算放大器在便携式讯号调理中的应用

自动归零运算放大器在便携式讯号调理中的应用

时间:12-22 来源:互联网 点击:

斩波式放大器已经使用几十年了,其历史可追溯到上世纪六十年代。斩波放大器的发明主要是用来满足对超低偏置和低漂移运算放大器的需求,这种放大器比当时的双极运算放大器优异。在当初的斩波放大器中,放大器的输入和输出为开关(或断续)式,输入讯号被调变,目的是补偿偏置误差,而在输出端则无调变。这种技术虽然解决了低失调电压和低漂移问题,但也存在其它约束。由于到放大器的输入被采样,输入讯号的频率必须低于斩波频率的一半,目的是为了防止混迭。除了频宽的约束外,斩波还引起许多较大的干扰,故需在输出端对这些纹波进行平滑滤波。

后来,对斩波放大器进行改进,透过自校准形成了一种稳定斩波的运算放大器。这种架构中采用了两个放大器,即一个主放大器、一个零点放大器,如图1所示。零点放大器透过将输入短路到地并施加一个校准系数到其调零端来校正自己的偏置误差,然后来监视并校准主放大器的偏置。相对于老式斩波放大器,这种结构具有一个很大的优点,因为主放大器可以始终连接到IC的输入和输出。于是主放大器的频宽决定输入讯号的频宽。因此,输入频宽不再依赖斩波频率。但来自开关动作的电荷注入仍然是一个问题,将会引起瞬变并与输入讯号耦合,因而引起互调失真。
 


图1:简化的稳定式斩波功能架构图。

自动归零结构在概念上类似于分别具有一个调零放大器和一个主放大器的稳定斩波放大器。不过,相对于稳定斩波放大器,在降低噪声,电荷注入乃至其它性能方面,后来都取得了很大的改进。各制造商采用不同的术语来定义这种结构,如‘自动归零’,‘自校准调零’以及‘零漂移’等。无论术语上怎么叫,背后的基本概念都是一样的。

自动归零结构的优点

如上所述,自动归零结构不断对放大器的失调电压误差进行自校准。相对于传统的放大器,这造就了以下几个显著的优点。

低失调电压:由于调零放大器不断地消除其自身的失调电压,并随后对主放大器施加一个校正系数。校正的频率与实际设计有关,但通常每秒有几千次。例如,Microchip 的MCP6V01自动归零放大器,每隔100 μs对主放大器校准一次,或者说每秒10,000次。由于连续不断的校准,使得失调电压比传统运算放大器低许多。此外,校准偏移电压的过程中也对其他的直流指标进行了校准,例如电源抑制和共模抑制。因此,自动归零放大器还能实现比传统放大器更好的抑制性能。

低温度和时间漂移:所有放大器,无论采用什么制程技术和结构,其失调电压都会随温度和时间而变化。绝大多数运算放大器都采用V/℃来定义温度漂移。该漂移可能随着不同放大器而存在很大的差异,但对于传统的放大器,通常每度变化为几微伏到几十微伏。该温度漂移对于高精密度应用来说是一个严重的问题,与初始漂移误差不一样,该漂移无法利用一次性系统校准技术进行校准。

除了温度漂移外,放大器的失调电压还会随着时间而变化。对于传统的运算放大器,该时间漂移(有时称作为老化)通常在数据页中没有指明,不过随着组件的老化也会产生很大的误差。

由于对漂移电压进行连续不断的自校准,自动归零结构从本质上将温度漂移和时间漂移降到最小。于是,自动归零放大器可以实现比传统运算放大器高得多的漂移性能。例如, MCP6V01运算放大器的最大温度漂移仅有50 nV/℃。

无1/f噪声:1/f噪声,或闪烁噪声,是由于传导信道的不规则性以及晶体管内偏置电流的噪声所引起的低频现象。在高频段,1/f噪声可以忽略,因为来自其它噪声源的白噪声将开始处于主导地位。如果输入讯号接近直流,如来自应力计、压力传感器和热电偶的输出讯号,则此时该低频噪声则是一个很大的问题。

在采用自动归零放大器中,作为漂移校准的一部份,消除了1/f噪声。由于该噪声源呈现在输入端,且行动相对较慢,因此它表现为放大器漂移的一部份并被补偿掉。

低偏移电流:偏移电流乃流入放大器输入端并使输入晶体管产生偏移的电流。该电流的幅度变化范围从微安到微微安,且与放大器的输入电路密切相关。该参数在放大器的输入连接高阻传感器时非常重要。由于该偏移电流流入高阻,在阻抗上产生电压降,因而导致电压误差。对于这些应用,需要考虑低偏移电流。

事实上如今市场上的所有归零放大器的输入级采用的都是CMOS,因而偏移电流非常小。但是,来自内部开关的电流注入能够导致比传统的CMOS输入运算放大器略为高一点的偏移电流。

静态电流:对于电池供电的应用,静态电流是一个关键参数。由于调零放大器和其它电路需要支持自

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top