微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 运算放大器输出相位反转和输入过压保护

运算放大器输出相位反转和输入过压保护

时间:04-20 来源:互联网 点击:

Q1-Q2的放大器的典型保护电路。如果没有任何保护,可以看出,两个输入间高于大约7 V的电压将导致Q2或Q1(取决于相对极性)反向结击穿。注意,如果是射极-基极击穿,则很小的反向电流也会导致两个晶体管的增益和噪声性能下降。发生射极-基极击穿后,运算放大器参数(如偏置电流和噪声等)可能会超出额定范围。这通常是永久性的,逐渐而微妙地发生,特别是在由瞬变触发的情况下。因此,几乎所有低噪声运算放大器,无论是基于NPN还是PNP,都会采用保护二极管,如输入上的D1-D2等。如果施加的电压超过±0.6 V,这些二极管就会导通,从而保护晶体管。

虚线所示的串联电阻起到限流作用(为保护二极管提供保护),但所有情况下均未使用。例如,AD797没有这些电阻,因为它们会降低器件的1 nV/Hz额定噪声性能。注意,如果内部缺少这些电阻,则必须提供外部限流措施,以防受差分过压状况影响。显而易见,这里存在一个取舍关系,必须权衡考虑全面保护的程度与噪声性能的降幅。注意,应用电路本身可能已在运算放大器输入中提供足够的电阻,因而不需要额外的电阻。

应用低噪声双极性输入级运算放大器时,首先应检查所选器件的数据手册,看它是否具有内部保护。需要时,应增加保护二极管D1-D2(如果运算放大器没有内置),确保避免Q1-Q2射极-基极击穿。如果应用中运算放大器经历的差分瞬变高于5 V,这些二极管应能处理。普通的低电容二极管足以胜任,如1N4148系列。视需要增加限流电阻,以便将二极管电流限制在安全水平。

其它IC器件结,如基极-集电极和JFET栅极-源极结等,在击穿时不会表现出这样的性能降低。对于这些结,输入电流应以5 mA为限,除非数据手册另有规定。

运算放大器和仪表放大器的这些不同过压防范措施看起来很复杂,事实上也的确如此!只要运算放大器(或仪表放大器)输入(和输出)超出设备边界条件,就可能发生危险情况或器件损毁。显然,为了实现最高可靠性,必须防患于未然。

幸运的是,大多数应用都是完全内置于设备中,通常看到的是采用同一电源系统的其它IC的输入和输出。因此,这种情况下一般不需要箝位和保护方案。

图5总结了过压考虑事项。

图5:电路内过压考虑事项汇总

采用高共模电压仪表放大器的共模过压保护

在精密运算放大器之前进行阻性输入衰减,是模拟通道过压保护的终极简化方案。这一组合相当于一个支持高压的仪表放大器,如AD629等,它能够以线性方式对叠加于最高±270 V共模电压的差分信号进行处理。此外,过压保护考虑最重要的一点是,片内电阻能够为最高±500 V的共模或差分电压提供保护。所有这些都是通过精密激光调整薄膜电阻阵列和运算放大器实现,如图6所示。

图6:高压仪表放大器IC AD629提供± 500 V输入过压保护;仅采用单个器件,极其简单,并且实现了防故障关断操作

分析该拓扑结构可知,精密运算放大器AD629周围的阻性网络充当一个分压器,将施加于VIN的共模电压降低20倍。AD629同时以单位增益将输入差模信号VIN转换成以本地接地为基准的单端输出信号。增益误差不超过±0.03 %或±0.05 %,失调电压不超过0.5 mV或1 mV(取决于器件等级)。AD629的电源电压范围是±2.5 V至±18 V.

这些因素相结合,使AD629成为可能经受危险瞬变电压的卡外模拟输入的简便、单器件保护解决方案。由于所用的电阻值相对较大,因此它本身就能保护器件,在不加电情况下,输入电阻也能安全地限制故障电流。此外,它还提供仪表放大器固有的运作优势:高CMR(500Hz时最小值86 dB)、出色的整体直流精度和灵活、简单的极性变化。

对性能不利的一面是,与较低增益的仪表放大器配置相比,如AMP03等,多个因素使得AD629的输出噪声和漂移相对较高,包括高值电阻的约翰逊噪声和拓扑结构的高噪声增益(21倍)。这些因素与电阻噪声共同提高运算放大器的噪声和漂移,提高幅度高于典型值。

当然,这个问题是否与具体应用有关,需要根据具体情况进行评估。

上一篇:光耦电路设计
下一篇:伏安法测电阻

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top