微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 利用PCB散热的要领与IC封装策略

利用PCB散热的要领与IC封装策略

时间:10-29 来源:互联网 点击:

引言

半导体制造公司很难控制使用其器件的系统。但是,安装IC的系统对于整体器件性能而言至关重要。对于定制IC器件来说,系统设计人员通常会与制造厂商一起密切合作,以确保系统满足高功耗器件的众多散热要求。这种早期的相互协作可以保证IC达到电气标准和性能标准,同时保证在客户的散热系统内正常运行。许多大型半导体公司以标准件来出售器件,制造厂商与终端应用之间并没有接触。这种情况下,我们只能使用一些通用指导原则,来帮助实现一款较好的IC和系统无源散热解决方案。

普通半导体封装类型为裸焊盘或者PowerPADTM式封装。在这些封装中,芯片被贴装在一个被称作芯片焊盘的金属片上。这种芯片焊盘在芯片加工过程中对芯片起支撑作用,同时也是器件散热的良好热通路。当封装的裸焊盘被焊接到PCB后,热量能够迅速地从封装中散发出来,然后进入到PCB中。之后,通过各PCB层将热散发出去,进入到周围的空气中。裸焊盘式封装一般可以传导约80%的热量,这些热通过封装底部进入到PCB。剩余20%的热通过器件导线和封装各个面散发出去。只有不到1%的热量通过封装顶部散发。就这些裸焊盘式封装而言,良好的PCB散热设计对于确保一定的器件性能至关重要。


Fig.1:PowerPADdesignshowingthermalpath

可以提高热性能的PCB设计第一个方面便是PCB器件布局。只要是有可能,PCB上的高功耗组件都应彼此隔开。这种高功耗组件之间的物理间隔,可让每个高功耗组件周围的PCB面积最大化,从而有助于实现更好的热传导。应注意将PCB上的温度敏感型组件与高功耗组件隔离开。在任何可能的情况下,高功耗组件的安装位置都应远离PCB拐角。更为中间的PCB位置,可以最大化高功耗组件周围的板面积,从而帮助散热。图2显示了两个完全相同的半导体器件:组件A和B。组件A位于PCB的拐角处,有一个比组件B高5%的芯片结温,因为组件B的位置更靠中间一些。由于用于散热的组件周围板面积更小,因此组件A的拐角位置的散热受到限制。


图2组件布局对热性能的影响。PCB拐角组件的芯片温度比中间组件更高

第二个方面是PCB的结构,其对PCB设计热性能最具决定性影响的一个方面。一般原则是:PCB的铜越多,系统组件的热性能也就越高。半导体器件的理想散热情况是芯片贴装在一大块液冷铜上。对大多数应用而言,这种贴装方法并不切实际,因此我们只能对PCB进行其他一些改动来提高散热性能。对于今天的大多数应用而言,系统总体积不断缩小,对散热性能产生了不利的影响。更大的PCB,其可用于热传导的面积也就越大,同时也拥有更大灵活性,可在各高功耗组件之间留有足够的空间。

在任何可能的情况下,都要最大化PCB铜接地层的数量和厚度。接地层铜的重量一般较大,它是整个PCB散热的极好热通路。对于各层的安排布线,也会增加用于热传导的铜的总比重。但是,这种布线通常是电热隔离进行的,从而限制其作为潜在散热层的作用。对器件接地层的布线,应在电方面尽可能地与许多接地层一样,这样便可帮助最大化热传导。位于半导体器件下方PCB上的散热通孔,帮助热量进入到PCB的各隐埋层,并传导至电路板的背部。

对提高散热性能来说,PCB的顶层和底层是"黄金地段"。使用更宽的导线,在远离高功耗器件的地方布线,可以为散热提供热通路。专用导热板是PCB散热的一种极好方法。导热板一般位于PCB的顶部或者背部,并通过直接铜连接或者热通孔,热连接至器件。内联封装的情况下(仅两侧有引线的封装),这种导热板可以位于PCB的顶部,形状像一根"狗骨头"(中间与封装一样窄小,远离封装的地方连接铜面积较大,中间小两端大)。四侧封装的情况下(四侧都有引线),导热板必须位于PCB背部或者进入PCB内。


图3双列直插式封装的"狗骨头"形方法举例

增加导热板尺寸是提高PowerPAD式封装热性能的一种极好方法。不同的导热板尺寸对热性能有极大的影响。以表格形式提供的产品数据表单一般会列举出这些尺寸信息。但是,要对定制PCB增加的铜所产生影响进行量化,是一件很困难的事情。利用一些在线计算器,用户可以选择某个器件,然后改变铜垫尺寸的大小,便可以估算出其对非JEDECPCB散热性能的影响。这些计算工具,突出表明了PCB设计对散热性能的影响程度。对四侧封装而言,顶部焊盘的面积刚好小于器件的裸焊盘面积,在此情况下,隐埋或者背部层是实现更好冷却的首先方法。对于双列直插式封装来说,我们可以使用"狗骨头"式焊盘样式来散热。

最后,更大PCB的系统也可以用于冷却。螺丝散热连接至导热板和接地层的情况下

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top