采用IGBT技术设计固态高压电源
引言
由于脉冲电源有断续供电的特性,在很多工控领域都获得了广泛的应用。比如说高能量物理、粒子加速器、金属材料的加工处理、食品的杀菌消毒、环境的除尘除菌等方面,都需要这样一种脉冲能量--可靠、高能量、脉宽和频率可调、双极性、平顶的电压波形。无论将此高功率脉冲电源用于何种用途,高压脉冲电源均是其设计的核心部分。传统的高功率脉冲电源一般采用工频变压器升压,然后采用磁压缩开关或者旋转火花隙来获取高压脉冲,因而大都比较笨重,且获得的脉冲频率范围有限,其重复频率难以调节,脉冲波形易变化,可靠性较低,控制较困难,成本较高。文中采用固态电器--IGBT来获取高压脉冲波形。将IGBT作为获取高压脉冲的电子开关,利用IGBT构成LCC串并联谐振变换器作为高压脉冲电源的充电电源,同时利用IGBT构成全桥组成脉冲形成电路,输出双极性高压脉冲波形。文中给出了系统结构、系统各个部分功能说明,通过仿真电力电子仿真软件PSIM对LCC充电过程和脉冲形成电路进行仿真分析。
1、高压脉冲电源系统结构
1.1 高压脉冲电源的拓扑结构
高压脉冲电源常用的主电路拓扑可以归纳为两类:电容充放电式和高压直流开关电源加脉冲生成的两级式两种。电容充放电式是通过长时间充电、瞬间放电,即通过控制充放电的时间比例,达到能量压缩、输出高压大功率脉冲的目的。优点是可以输出的脉冲功率和电压等级较高,脉冲上升沿较陡;但是,输出脉冲的精度难以控制,而且重复频率低,因而应用范围比较有限,主要应用在核电磁物理研究、烟气除尘、污水处理、液体杀菌等场合。两级式结构为高压直流开关电源级加上脉冲形成级的结构。文中采用这种两级式拓扑结构,电源系统结构框图如图1所示。两级式有脉冲稳定、可控性好、精度高、重复频率变化范围大等特点,因而适用范围较广,通用性较好。
图1高压脉冲电源系统结构框图
1.2 电源主电路结构和工作原理
电源主电路原理图如图2所示,电路由工频交流输入、整流滤波、LCC串并联谐振变换器、电容充电储能、电感的缓冲隔离、IGBT全桥逆变、脉冲升压变压器等单元构成。电路工作过程:220V交流通过整流滤波后得到低压直流输出,通过LCC串并联谐振逆变经高频升压后向储能电容C充电,经过IGBT全桥逆变拓扑结构实现双极性脉冲输出。
图2主电路原理图
图2中LCC串并联谐振变换器是此高压脉冲电源充电电路的核心部分,由4个功率开关管IGBT与谐振电感Ls、串联谐振电容Cs、并联谐振电容Cp组成,工作原理是:利用电感、电容等谐振元件的作用,使功率开关管的电流或电压波形变为正弦波、准正弦波或局部正弦波,这样能使功率开关管在零电压或零电流条件下导通或关断,减少开关管开通和关断时的损耗,同时提高开关频率,减小开关噪声,降低EMI干扰和开关应力。
分析LCC串并联谐振充电电路时,假设:1)所有开关器件和二极管均为理想器件;2)变压器分布电容为0;3)n2C》Cs;4)开关器件工作在全软开关状态。
根据开关频率fs与基本谐振频率fr的关系,LCC谐振变换器有3种工作方式:1)fs<0.5fr的电流断续模式(DCM),开关管工作在零电流/零电压关断、零电流开通状态,反并联二极管自然开通、自然关断;2)fr>fs>0.5fr的电流连续模式(CCM),开关管为零电流/零电压关断、硬开通,反并联二极管自然开通但关断时二极管有反向恢复电流,电路开关损耗较大;3)fs>fr仍然为电流连续模式(CCM),与2)的区别是开关管为零电流/零电压开通、硬关断,电路开关损耗同样较大。谐振频率为:
其中Lr为谐振电感,为谐振电容,视工作状况不同,由串联电容Cs与并联电容Cp共同决定。
在此设计中,选用合理的逆变设计参数,使LCC串并联谐振变换器工作在DCM模式下,结合软开关技术,使开关损耗达到最小。
- 使用简化电路的高压放大器(11-21)
- 驱动压电管的高压放大器(11-29)
- 数字可调式高压直流稳压电源的设计(02-25)
- 低压直流供电电路中高压直流的产生(08-27)
- 基于SPE61A单片机的非接触式高压验电器的开发(09-29)
- 一种程控高压充电系统设计(11-26)