基于MSC1201的温度控制系统设计
模块
作为系统输出,采用2个SR120281型4位7段式LED模块显示检测到的温度和定时剩余时间。该模块含4个数码管,采用共阴极连接。模块中4位数码管的阳极引脚并联,通过阴极选择需要点亮的数码管。LED的阳极驱动采用MOTOROLA公司的MC14495型译码驱动器来完成,利用bic-8718型驱动电路产生4位数码管的位选择信号。每次点亮1位数码管,通过选择适当的选通顺序,利用人的视觉残留即可得到1次显示中4位数码管同时点亮的效果。
4 温度控制系统的软件设计
系统软件的复杂度与其所要完成的任务密切相关。本系统主要用于小型恒温箱的温度控制,需要控制的对象有加热装置的开关、风机的开关和带动托盘旋转的步进电机等。使用者通过按键设定恒温箱的工作温度和工作时间,定时到时,加热器关闭并告警。还有一些显示控制及对小键盘输入的响应处理。其程序包含以下几部分:键盘扫描子程序、温度信号采集子程序、显示控制子程序、电机控制子程序、继电器控制子程序和通信子程序。图5所示是系统的软件流程。
5 PC与温度控制系统的通信
对于一种温度采集与控制系统,实验完毕后可能要使用实验数据,当需要对现场数据进行更加复杂的数学分析运算和对数据进行海量存储时,与PC主机的通信非常重要。笔者利用MAX232电路实现系统与PC主机的串行通信,并设计了上位机软件。PC主机每隔30s与下位机通信一次以获得温度数据,并将这些数据存入ACCESS数据库中,便于日后查询。
利用VC完成上位机软件,在VC中通过使用MSComm控件来完成串口通信,在接收到数据后通过DAO方法访问数据库实现对数据的存储、查找、排序等操作。由于篇幅限制,具体过程恕不赘述。
6 结束语
基于MSC1201型微处理器的温度数据采集与控制系统采用了新型处理器,在应用中节省了大量的硬件设计工作,缩短了设计周期,以较小的成本完成了多点温度数据的实时采集与控制。
- 多个AD9779 TxDAC器件的同步(11-14)
- 如何收敛高速ADC电路(08-28)