微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 运算放大器工作原理及误差分析

运算放大器工作原理及误差分析

时间:06-11 来源:互联网 点击:

,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。

等效输入噪声电压:等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。

差模输入阻抗(也称为输入阻抗):差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级的运放的输入电阻一般大于109欧。

共模输入阻抗:共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。通常,运放的共模输入阻抗比差模输入阻抗高很多,典型值在108欧以上。

输出阻抗:输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。这个参数在开环测试。

3. 运算放大器的对信号放大的影响和运放的选型

  

由于运算放大器芯片型号众多,即使按照上述办法分类,种类也不少,细分就更多了,这对于初学者就难免犯晕。本节力求通过几个实际电路的分析,明确运算放大器的对信号放大的影响,最后总结如何选择运放。

CA3140的主要指标为:
项目                单位      参数
输入失调电压            μV       5000
输入失调电压温度漂移    μV/℃    8
输入失调电流            pA        0.5
输入失调电流温度漂移    pA/℃     0.005
  
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目                     单位      参数
输入失调电压造成的误差       μV       5000
输入失调电流造成的误差       μV        0.0045
    合计本项误差为               μV       5000
    输入信号200mV时的相对误差  %         2.5
    输入信号100mV时的相对误差  %         5
    输入信号  25mV时的相对误差  %         20
    输入信号  10mV时的相对误差  %         50
    输入信号   1mV时的相对误差  %        500

   

初步结论是:高阻运放的输入失调电流很小,它造成的误差远远不及输入失调电压造成的误差,可以忽略;而输入失调电压造成的误差仍然不小,但是可以在工作范围的中心温度处通过调零消除。

这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目                     单位      参数
输入失调电压温漂造成的误差   μV       200
输入失调电流温漂造成的误差   μV         0.001
    合计本项误差为               μV       200
    输入信号200mV时的相对误差  %         0.1
    输入信号100mV时的相对误差  %         0.2
    输入信号  25mV时的相对误差  %        0.8
    输入信号  10mV时的相对误差  %        2
    输入信号   1mV时的相对误差  %        20

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top