微驱动器的电磁与运动分析及仿真
图3是采用二维平面单元PLANE53和INFIN110对平面螺旋线圈进行ANSYS○R分析的结果,其中图3(a)是线圈Z方向磁场的分布云图,图3(b)是HZ的变化率曲线。从图2和图3可以看出,数值模拟结果与理论分析结果相一致。图3中的结果是对8圈的方形平面线圈分析得到的,线圈的内边长为324μm,外边长为548 μm,每一匝线圈的线宽为8μm,两匝线圈之间的间距为8μm。
2.2微驱动器的运动分析
由于PDMS振动膜四边与下层硅片固定相连,因此PDMS振动膜可以简化为一个中央受均布力的四边固支薄板,振动膜的最大挠度位于其中心,其表达式如下
式中:D是振动膜的弯曲刚度;a是薄膜边长的一半;q0是作用于薄板的均布压力;C是与q0作用区域相关的系数。
正方形四边固支薄板的固有频率计算式为
式中:ωn是振动膜的固有频率;a是振动膜边长的一半;D为膜片材料的弯曲刚度;m为振动膜的面密度,即单位面积内材料的质量,其中
式中,E、μ岸和h分别为薄板的杨氏模量、泊松比和膜厚。
在本微驱动器中,PDMS薄板的尺寸是2 mm×2 mm×40 μm,材料特性为E=750 kPa,μ=0.45。CoNiMnP永磁体阵列为7×7,其中每一个磁体柱的尺寸为50μm×50μm×20μm,其特征特性为E=50 GPa,μ=0.2。由式(1)计算得到的磁力FZ为12.25μN,由等式(2)计算的薄板最大挠度为40.96 μm。图4是采用ANSYS○R对薄板进行形变和应力分析的结果,从图中可以看出振动膜的最大挠度为37.7μm,与理论分析值有7.96 %的误差。
对于本文采用的硅橡胶膜和磁体尺寸,可以通过前面的公式近似计算出该振动膜的固有频率为ωn=3.2 kHz。为了得到振动膜固有频率方面的信息,需要对其进行模态分析。在此,选用ANSYS次空间法对振动膜的振动模态进行分析,得到其一阶固有频率,如图5。从图5可知驱动器振动膜的一阶固有频率为f1=2 684 Hz,通过ANSYS计算得到的一阶固有频率与用理论方法计算结果相差16.1%。
3 结 语
采用仿真软件ANSYS对驱动器进行电磁与运动分析,仿真分析得到的振动膜挠度值与理论分析值有7.96%的误差,一阶固有频率与用理论方法计算结果相差16.1%,可以对微驱动器的结构设计起到指导作用。由于PDMS膜是透明材料,而且其生物兼容性和工艺性好。因此,基于永磁体的双向电磁驱动器在生物化学和光学微机电系统中具有很好的应用前景。
- 基于Multisim 10的差动放大电路仿真分析(08-31)
- 基于IBIS建模仿真分析的信号完整性问题(10-15)
- 基于ADS的功率放大器设计实例与仿真分析二(09-26)
- CCⅡ低通滤波器的PSpice仿真分析(09-23)