平面光学元件在工艺设计中的应用
中胶盘一直保持这种良好状态,直到光学元部件达到所要求的精度为止。在实际加工的整个过程中,保持一致状态是不太现实的,需要根据胶盘面形及工件面形的实际情况而定。通过调整校正盘的位置状态,让胶盘尽可能保持所需要的面形,以便高效地加工相应的工件。
在实际的环行抛光加工过程中,总是将3台一组的环抛机群中的一台胶盘面形保持微凹,一台胶盘面形保持微凸,一台用作最后的面形修正。这样可以针对不同初抛光的不同加工件的不同面形状况选择相应的环行抛光机,节约修正胶盘面形的时间,提高工件的加工效率。
在加工工件的过程中,最重要的尽可能保证胶盘面形良好。在精抛光过程中,调整校正盘的位置时,调整幅度尽可能小一些,有利于胶盘与校正盘的面形相互磨合。当校正盘的调节量较大时容易出现校正盘颤动现象,影响胶盘的修正,同时校正的面形难以保证,容易出现带差,导致修整胶盘的时间比较多,真正加工工件的时间少,降低了加工效率。
在加工大口径方形元件的过程中容易出现四个角"踏"或"翘"的现象。为了克服加工过程中的边缘效应,在实际加工过程中通过对专用工装进行改进,同时在加工过程中有意识地控制被加工件的工作位置状态,可以大大缓减大口径方形元件加工"塌边"或"翘边"问题。
被加工的方形元件在加工过程中容易出现对角塌角现象,笔者认为是被加工件面形与胶盘面形不吻合或专用工装设计上存在的一些不足引起的,通过改进专用工装,比较好地解决了这一问题。
环抛大口径高精度光学元部件时,加工精度达到0.8λ(P-V,λ=0.6328um)左右是容易的,收敛速度也比较快。当精度越往上加工难度就越大,甚至出现加工精度反复。当加工精度达到λ/2(P-V,λ=0.6328um)左右时,工件单次加工时间就越来越短,检测的频率就更快,以便保证被加工件的收敛趋势及精度。
用环行抛光技术加工,需在投射波前要求的高精度光学元部件透射两面的面形精度及材料参数所引起的波前误差,因此在加工透射波前所要求的光学部件时,在实际加工中常将方形元件的单面面形精度控制在λ/3左右。然后进行第二面精度的修正,在第二面精度达到负λ/3左右时进行透射波前检验,并进行小量的修正,知道加工精度单次透射波前达到λ/6(P-V,λ=0.6328um)。加工反射波前所要求的光学元部件相对难度就要难度大一些,加工过程中主要解决"塌角"或"翘角"(主要是"塌角")现象,只要将"塌角"或"翘角"控制在一定范围及精度内,则整个表面的反射波前达到λ/4(P-V,λ=0.6328um)是可能的。所加工的320×320×48mm和320×320×35mmUBK7材料的光学样件经24''相移干涉仪检测。
4.结论
虽然笔者在大型环抛机加工方面有了一定的加工经验,但还存在许多不足的地方。2m、2.5m环抛机加工工艺还不成熟,还有很多细节需要进一步的研究。1m环抛技术与2m环抛技术虽然在抛光原理上是一样的,但直接将1m环抛上的加工经验移植到2m环抛机上进行加工又不太适宜,而且2m环抛机对环境的要求比1m环抛机对环境的要求要严格得多。
加工设备性能不稳定。由于2m及2.5m环抛机在国内都属于新研制的大型光学加工设备,设备制造厂商缺少实际加工大口径光学元部件设备的经验,有一些地方需要作进一步的改进。
环抛加工受环境影响较大,对环境温度及其波动大小、湿度、环境清洁都有较高的要求。下一步准备进一步净化环抛加工环境,提高环抛设备加工的环境条件。
- 一种新型高精度CMOS带隙基准源的设计(09-12)
- 高精度自动校时钟在中波转播台中的应用(10-25)
- 基于DPWM的高速高精度积分型模数转换器(11-05)
- 高速高精度流水线模数转换器的设计(12-09)
- 高精度的温度传感电路设计(03-09)
- 基于TMS320F2808的高精度UPS电源锁相技术(11-16)