微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 平面光学元件在工艺设计中的应用

平面光学元件在工艺设计中的应用

时间:02-13 来源:互联网 点击:

1.前言

  

为了满足大型光学系统对大口径高精度平面光学元部件的需要,环行抛光技术越来越广泛地应用到实际光学元部件的生产中。采用环行抛光技术(本文中主要涉及大玻璃校正盘修磨的单环行抛光机)加工的光学元部件可以获得较高的面形精度。对于圆形光学元部件来说,使用环行抛光技术可以得到λ/8(P-V),有多年光学加工经验的加工者可以加工到λ/20~λ/40。环形抛光技术在加工大口径高精度平面光学元部件中,同传统的加工方法相比,可以获得更好的面形精度或波前精度,在加工异形光学元部件中更有优势。

2.大玻璃校正盘修磨的单环行抛光机环行抛光原理

在原理上,环行抛光运转特性与传统盘相同。任何两个工件表面如能在任一部分任一方向上向彼此都能均匀接触,其表面形状必定是球面,其曲率可以是正、负或零。当校正盘沿着径向向外移动时,转动力矩增大,使沥青胶盘变凸;当校正盘沿着径向向内移动时,转动力矩减小,使沥青胶盘变凹。

假设一个工件以角速度ω旋转,以Ω旋转的磨盘中心到工件旋转中心距离为R,距工件旋转中心距离为r,并相对磨盘中心和工件中心连线的角度为θ。磨盘的相对速度为V(r,θ)=.[R2Ω2+(Ω-ω)2+2rR(Ω-ω)cosθ]1/2.(1).当Ω等于ω时,磨盘与工件之间的速度关系在任意位置都是一个常数。由于在环抛加工时加工件及校正盘处于自由状态压力均匀,从而使整个表面均匀磨削;当Ω不等于ω.时,会产生一个径向的磨损变化,使表面的磨削不均匀。

整个表面磨削量dh/dt.可由Preston.方程表示为:dh/dt=kPv=kP(ds/dt)。

式中,k为比例常数,它与被抛光材料、抛光膜层材料、抛光粉种类、抛光液浓度、PH值及抛光温度等参数有关;P为局部压力;V为相对速度,等于在dt.时间内的行程ds的比值。

  

3.工艺实验

 

3.1.环抛设备简介

成都精密光学工程研究中心目前配备了三台一米,三台二米和一台二点五米的环形平面抛光机,其中一米的设备主要加工Ф330毫米以内的平面光学元部件,二米的设备主要加工Ф600毫米以内的平面光学元部件,二点五米环抛设备主要用于Ф800毫米以内的平面光学元部件。并且一米、二米的环抛设备均按照3台一个机组配置,这样的机组培植比单台培植更有利于光学元部件面形的控制,使面形修正精度达到了用户的要求,提高了工作效率,缩短了加工周期。

  

一米环抛设备和二米环抛设备主要由变频器控制的调速电机、蜗轮蜗杆减速箱、基座、安放在平面轴承上的托盘、大理石及上面的抛光膜、校正盘、夹持用辅助工装及可以检查的正盘面形的带翻转装置的翻转机构组成。机床主轴转速为0.3~3r/min。;该设备调整校正盘比较方便,视野开阔,上下被加工元件也比较方便,夹持器调整范围比较大,翻转机构可以方便校正盘面形的检测及在设备休整或停机时存放校正盘。由于校正盘夹持器较长,夹持器在工作中尤其是校正盘与抛光胶盘面形不吻合的时候容易出现颤抖,影响胶盘的修正及被加工件的加工。

2.5m环抛设备主要由调速电机、齿轮减速箱、基座、安放在大齿圈上的托盘、大理石及抛光膜、校正盘及夹持校正盘和工件的横梁支撑结构及其他辅助工装组成。机床主轴转速为0~4r/min。该设备设计时将主机部分与横梁支撑结构分离,减少了主机与衡量结构相互间的互相影响,同时采用横梁支撑结构增大了校正盘的刚性。但校正盘和工件的调整比较烦琐,在调整过程中脏东西容易掉在抛光胶盘上,使被加工件出现道子。在光学加工中尤其是精抛光时最忌讳被加工件出现道子,这将直接影响到加工质量、效率及加工单位的信誉。

  

3.2.工艺实验

(1)方形元件的精细研磨。将方形元件用胶条或专用工装上盘进行精细研磨。一般大口径光学元部件的精细研磨最后一道砂用W14金刚砂研磨,研磨时必须将两面磨透,并将等厚控制在0.01以内,面形微凹一些,有利于基板的抛光修面形精度。观察表面砂眼粗细均匀,没有新的道子及外伤。

(2)方形元件的初抛光。可将方形元件用点胶上盘进行初抛光。刚开始时应该勤加抛光粉,抛光粉的浓度要大一些,以降低光学表面粗糙度和提高抛光效率,并在将光学元部件基板抛亮的过程中逐步修正面形精度,最终将面形控制在1.5λ左右,表面疵病控制在Ⅲ级。

(3)方形元件的环行精抛光。大口径方形元件的精抛光采用环形抛光技术加工。在环形抛光过程中,首先需要胶盘的面形要良好,在上抛光工件之前就应该将抛光胶盘修正到一定的精度,并且希望在加工过程

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top