微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 工业牵引用大功率IGBT模块设计技术

工业牵引用大功率IGBT模块设计技术

时间:02-06 来源:互联网 点击:

  为了确保在低温下,如40℃时,所需的1700v电压的spt-igbt和二极管,有足够的电压余量,其阻断电压均应选为1850v。

  (2) 开关特性

  (a) spt-igbt

  (b) 二极管在 25℃和125℃条件下

  图5和图6分别为1700v/2400a的e2模块在关断和开通时的开关特性。实验的条件是:在额定电流下,直流母线电压为900v。我们看到,在1700vspt-igbt的开关瞬间的关断电流很平滑。由于基区减薄,又有spt缓冲层,尾电流的曲线很短。因此在125℃和额定条件下,eoff关断损耗只有大约1焦耳。这一损耗值与相同条件的npt-igbt相比少了20%。另外,拖尾电流很短,使得开关速率提高,同时也降低了电压过冲和电磁干扰。图b为开通时的开关波形。因为使用了优化设计的二极管,igbt的开通损耗也大大地降低,反向恢复二极管的波形曲线如图7所示。


(3) 安全工作区(soa)的特性

  1700v/2400ae2模块有很好的耐用性,在igbt关断(rbsoa)和短路条件时(scsoa),有一很宽的安全工作区。图8为1700v/2400ae2模块在关断rbsoa时的开关特性。元件上加了2倍的额定电流4800a,温度125℃,直流电压1300v。在大功率模块,例如e1、e2中,大量的igbt芯片并联使用。电流上升率di/dt也因并联的igbt个数而成倍的增加。如此大的di/dt值和杂散电感可以引起很高的过压。模块在高的直流电压和大电流下工作,如果没有采取特殊的手段,那么关断过压有可能超过igbt额定的电压。

为了额外的过压加在igbt上,我们通常在rbsoa测试中使用有源箝位。图9为有源箝位的原理图。使用抑制二极管来钳制过压。如果igbt的关断过压超过了抑制二极管的齐纳击穿电压,igbt的门极电压将被抬升。因此,集电极电流上升的斜率更缓,限制了过压。当igbt开通时,为避免门极电流流入集电极,我们使用了肖特基二极管。另外,我们推荐使用一个电阻来减少抑制二极管的电流。为保护igbt的门极不受过压的影响,采用了一双向抑制二极管。在rbsoa试验装置中,我们使用1450v水平的箝位电压来抑制二极管。因为动态效应,关断过压通常要比抑制二极管的齐纳电压高很多。为了使有源箝位的反应速度更快,还可以将一附加的电容并联在抑制二极管上。这一电容也可以抑制igbt开通和关断时的dv/dt。不过,在试验电路中,我们没有选用电容。

  图10和11显示了温度分别为25℃和125℃时,1700v/2400ae2模块的二极管反向恢复特性曲线。电流为2倍额定电流4800a,直流电压为1300v。1700v二极管的动态特性确保了它在各种条件下,尤其是在低温和小电流时,具有软恢复、高耐用性和高可靠性的特点。

在不同的集电极电流ic下,spt-igbt的关断和开通损耗、二极管开通时的反向恢复电荷、电流和能耗曲线如图12和图13所示。

图14显示了在25℃和125℃时,1700v/2400a spt-igbte2模块在短路时软关断情况下的波形,直流电压为1300v,短路时间为10μs。电流波形图显示,对于2400v模块,在25℃时,最大的短路电流为13×103a;在125℃时,最大的短路电流为11.5×103 a。


5 结论

  本文讨论了利用spt-igbt和二极管芯片组构成的新的1700v spt-igbt e1/e2的模块产品类型。1700vspt-igbt和二极管芯片技术提供了高强度、低功耗和具有良好电磁兼容的开关特性。1700v/2400a spt-igbte2模块的实验结果,证明了其具有优良的电特性。应用spt芯片技术的abbe1/e2工业标准模块,将给用户提供特性更好、封装更可靠的元件,用来满足牵引等其它工业应用的需要。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top