微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 减少D类放大器中的电磁干扰

减少D类放大器中的电磁干扰

时间:10-21 来源:21IC 点击:

次开关转换时引入(或增加)时间跨度,其间V ≠ 0,同时负载电流I ≠ 0,导致片上功耗适度增加,因而带来效率的降低。其次,一个非ERC输出级在本质上仅是一个大型逆变器(可能包括直通或短路冲击电流的缓减),而一个ERC输出级包含附加电路,能够调节上拉和下拉器件的触发电压,以便在输出端上产生期望的、受控制的转换速率。取决于所使用的方法,这增加了芯片面积(成本)和电流消耗(降低效率)。总的来说,由于增添ERC而产生的效率代价可能为1% ~ 2%。

扩频时钟

上述讨论的边缘速率控制(ERC)是一个有效的方法,可减弱在30MHz以上频率范围产生的EMI (也受限于FCC法规的限制),而D类放大器开关输出的基本载波频率和其落在30MHz以下范围的相关奇次谐波(方波),则不太好采用这项技术来处理。图3所示为此频带出现的由传统的、未修改的D类放大器输出产生的能量。

为了减小D类输出频谱中的基音和泛音尖峰高度,可以在放大器的时钟电路中加入少量频率调制——也许调制指数在±5%左右,不会影响所放大音频信号的质量。针对调制信号源的特性有许多选择,一个常规作法是使用带有重复频率(全模式重复频率)的伪随机模式,其超出最高预期音频信号频率(通常为20kHz)一个适当的余量,这可防止产生可能落入音频频带的音调。

 

图4显示了和图3所示相同的D类输出,但其带有±5%调制,在40kHz模式重复频率下由伪随机序列来实现。

图5显示了图3和图4颜色叠加后的图片,更清楚地显示了由扩频时脉带来的差异。能够看见在整个频谱范围内,基准时钟频率的奇次谐波被抑制了将近10dB。



单边调制

可以采用一种附加方法来减少EMI,通过修改调制方案,当音频基带信号振幅变得足够大时,允许单边差分或桥式D类输出对停止切换(图6)。这本质上允许反向输出,一直持续到开关,以便进行全面调制,将输出信号保持在剩余间隔直至其最高峰值。此方案,在很大比例时间内(取决于音频源材料),仅有一个输出在开关,因而EMI(在那个时间内)减少了一半。这增加了优势,减少了由于功率器件门和其它寄生电容充放电带来的固定开关损耗。它还缩短了输出在ERC转换方面的时间,如上所述,该转换有少量的效率代价。此技术的缺点是放大器的整体前向增益会有些许降低,同样地,总体谐波失真(total harmonic distortion,THD)和噪声也有少量增加。带有和未带有单边调制的D类输出频谱如图7。


结论

D类放大器通常用于便携设备,因其功率效率超过传统AB类放大器。D类技术的主要缺点是其固有的EMI,会对周边电子设备产生不利影响。现在已经出现了一些有效的IC设计技术,能够极大地缓解EMI问题,而无需负担额外的外部元件。



 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top