大功率装置用多路输出高压隔离新型开关电源设计
3 控制电路
控制电路的主要功能就是产生驱动信号,控制主电路产生一个幅值恒定的高频电流。为了使电流幅值恒定,采用了如上节所述的双Buck变换器电路。这个双Buck变换器控制电路的主要部分包括一个电流反馈的PI调节器和一个PWM信号发生器。单相桥式变换器的控制电路用以产生如图3(c)和图3(d)所示的控制信号。所有上述的功能只要用一片集成芯片UC3875就可以实现。UC3875产生的驱动信号使两个对角开关管的开关动作相对于另两个对角开关管的开关动作产生相移,实现了对桥式功率级的控制,能够在很高的频率下允许固定频率PWM调节结合谐振零电压软开关,实现高效率。
4 输出变压器
采用磁环做输出变压器,每个输出变压器的原边仅有一匝,即高频交流电流i2流经的一根穿过所有输出变压器磁环的高压绝缘电缆线。通过输出变压器的增减,驱动电源路数能够很容易地实现增减。如果电流I1和整流器的输出电压足够高,仅一个电源就能够实现大量的隔离输出。新型电源每个输出单元都可以很容易地放置,只要把它们安装在相应晶闸管附近,用电缆线穿过所有磁环,用光纤传送DSP输出的驱动信号,既可实现整个装置的电能与信号分开传送,又可满足限流器中晶闸管安装的需要。因为,这些晶闸管被使用在高压电力电子装置中,每二个晶闸管的驱动电路之间的隔离电压必须足够地高。如果采用一根高压绝缘电缆线作为输出变压器的原边绕组,这样原边绕组与副边绕组之间的隔离电压至少等于这根高压绝缘电缆线的绝缘电压。这样,只要使用一根超高压绝缘的电缆线,变压器的原副边的隔离电压就可以达到相当高的等级。由于原边绕组的匝数仅有一匝,因此,要求导磁体具有很高的导磁率,磁环的磁路长度必须尽可能地短,而磁环的截面积则要求尽可能地大,以获得良好的电磁耦合效果,降低激磁电流。
5 副边电路
图2第二部分所示是辅助电源的主电路,它的其它部分如图4(a)所示。端子J及K与图2中相同的端子相连。而新型电源隔离输出的副边电路如图4(b)所示。由二极管D1—D4组成的整流桥,把交流电流变成了直流电流。由电阻R1—R7,并联稳压器Z1,晶体管S1和MOSFET S2组成的电路把这个直流电流变成一个稳定的电压。即形成一路驱动电源。
6 仿真波形和实验结果
为了确认设计电源的有效性,对图2及图4所示电路进行了仿真。仿真结果如图5所示。仿真依据的主要参数如下:L1=1mH,L2=L3=L4=15μH,C4=C5=C6=C7=1μF。
(a) 辅助电源的副边电路
(b) 隔离输出的副边电路
图4 副边电路
图5 I1,i2,its1及驱动电源输出电压的仿真波形
图6 输出电流i2波形
根据原理分析及仿真验证,开发了一台700W的电源样机,已经成功使用在380V限流器实验装置中,实现了长期可靠运行。用一无感电阻对输出电流i2取样,并把示波器采集的数据用Origin数据分析软件还原,波形如图6所示。电源样机每个输出变压器的副边绕组都是3匝。每路驱动电源的负载阻抗都是25Ω。它的主要特性如下:驱动电源路数为12(可以更大);每路驱动电源输出功率可达20W;各路驱动电源之间的隔离电压为40kV。
7 结语
开发了一种新型的用于短路故障限流器中晶闸管驱动的多输出开关电源。设计电源的输出路数足以用来驱动所有使用在限流器中的晶闸管。使用超高压绝缘的电缆线作为所有输出变压器单匝的原边绕组,电源输出之间的隔离电压可以达到相当高的等级。根据限流器中的晶闸管的实际需要,电源输出级的路数和安装位置可以很容易地改变。相对于用其他方式研制的具有相同输出路数,相同功率,相同隔离电压的电源,该电源具有体积小,重量轻,效率高,可靠性强,价格低等显著优点。使用在大功率的装置中,新型电源也可以很好地适应那些具有大量功率电子器件的,如多用途的大型电机驱动系统的需要。
- OTL电子管功放电路讲解(01-17)
- 彩电行输出变压器的代换原则(10-25)
- 基于TCF792的晶闸管整流电路(01-09)
- 如何利用一个光电双向晶闸管实现ACS交流开关触发电路(07-08)
- 新型获取晶闸管电压过零信号的电路(09-13)
- 晶闸管整流器全关断检测电路的设计(02-24)