基于再生能源系统的高效能电力转换器设计
1引言
全球经济的发展,带来了其副作用——能源的日趋枯竭。各种能源,尤其是石化能源,是最紧缺的能源,加之温室效应造成的生态环境破坏,各国其实早已对能源的可持续发展利用产生了相应的考虑,不仅为自己的能源问题担忧,也为后代的能源问题担忧,因此,全球已经达成了环境保护和能源再生的一致认同。
在部分洁净能源中所建立的电力系统,需要利用市电网路或是使用电池做为备载来源,无法全时提供电能,也就无法弥补其间歇性发电的缺憾。因此,在众多洁净能源之中,太阳能便成了最环保和最可持续的发电模式,能有效取代目前石油能源。因此,使用太阳能或燃料电池,作为发电系统的初始电力提供者,也就成为国家的能源策略发展重点。
虽然太阳能电池及燃料电池等新能源的开发,其重要性已经成为大家的共识,而有深刻的了解。但整个发电系统,除了以再生能源作为初始电力外,还必须以有效地利用能源为诉求。如图1为太阳能发电系统的示意图,太阳能电板吸收光能转换为电能,并将其输出的直流电压,经过直流-直流的电力转换器及直流-交流的电力逆变器,转换为直流及交流电,以供应不同电气器具及设备使用。因此,电力转换技术是再生能源发电系统中,众多关键技术中的一重要环节,需要彼此提升,相辅相成。
电力转换技术在过去几十年,经过研究学者及工程人员的努力,已经成为一相当成熟的技术。但过去电力转换需求,有很大的比率是以市电整流及功因改善电路后,成为400V直流高压作电力转换,或是以电池为原始电力,应用在低功率的应用场合。两者的电力转换应用,都因其输入侧为一低电流的规格,半导体或其他元件的导通损耗相对较低,容易处理。反观,再生能源的发电系统,其提供的输入电压为低直流电压,需要转换成高输出的直流或交流电压,才能在未来完全替代目前石化能源的发电系统,为大多数现行使用的设备使用,提供一稳定的电力。以太阳能电池与燃料电池的电力系统为例,后级的电力转换需要处理的是变动范围大的输入低电压。假设其产生的电压为16~24V,若要求的输出功率为5kW的电力需求,在最低的输入电压为16V工作条件下,将有高达300安培以上的输入电流。只要电力转换传输线上有一毫欧姆的电阻值,就有90瓦以上的损耗,除了造成转换效率降低外,散热的处理更是影响空间需求、可靠度及成本的主要因素。处理上述的大电流需求,可以采用单一电力转换器并联多个半导体开关元件或采用多相式(Multiphase)并联多个电力转换器等方式,来达成高效率高功率密度电力转换需求的目标。因此,电力转换技术面对此一应用的挑战,应是如何提升电力转换技术,让每一个电力转换器能更有效率地处理高升压比、输入大电流及输出高电压等所衍生的技术问题。
因此,本文提出一新型低输出电流涟波升压型电力转换器(Boost Converter with Ripple Reduction, BCRR)电路架构。基本上,此一电路因其为电流馈入式,得以保留该型电路的优点。同时,又可以改善应用于低压-高压的电力转换器电路,所面临的高输入电流及高输出电压工作条件下的诸多挑战,进而可以达成高效率、高功率密度的设计目标。本文除介绍此一电力转换器电路架构工作原理,并进行以16-24V低输入电压,200V输出电压及320W输出功率为电气规格,制作一雏形电路实验,验证此一电路架构能改善元件的高承受电压及电流应力,降低高压输出侧脉动波形的电流涟波,并提高以太阳能及燃料电池等低电压为初始电力的发电系统的效率。
2 电路工作原理
图2及图3分别为本文提出一新型低输出电流涟波升压型电力转换器电路及其主要电压、电流波形。电路的组成,包括一输入电感器Li,一变压器T1,两个半导体开关元件Q1-Q2,一个箝位电容器C1,一个输出电容器C0,及两对两两串接在一起的整流二极体D1-D2-D3-D4。其中变压器一次侧有两组绕组P1-P2,二次侧有两组绕组S1-S2,及两组分别标示为L1-L2的二次侧漏感。各组的匝数比,分别为P1:P2:S1:S2=1:1:N:N。
为简化电路的分析,假设:所有的半导体元件为理想;输入电感器Li值足够大,因此可视为一理想电流源;箝位电容器C1,一个输出电容器C0足够大,因此可视为一理想电压源;漏感L1=L2。
本电路的工作原理,可区分为四个时区间,分别如图4(a)-(d)所示。
(a)T0-T1
如图4(a)所示,闸级控制信号VGS1于T0加诸于半导体开关元件Q1。因此,半导体开关元件Q1和Q2同时被导通,变压器一次侧两绕组P1-P2因此被短路,导致一次侧输入电压跨在输入电感器Li,处于充电状态,电感电流因而呈线性上升。而在二次侧,因整流二极体D1-D4,无法获得导通的顺向偏压,均呈现关断状态。此时,一半的负载电流由输出电容C0提供,另一半则由箝位电容器C1经由C1(+)-S1-L1-R-S2-L2-C1(-)路径提供。由于箝位电容器能分摊此一时区间所需要的负载电流,输出电容的电流涟波得以降低为负载电流的一半。因此,得以选用较小数值的输出电容器。另外,因为二次侧绕组极性相反,跨在此二绕组上的电压互相抵消,使得箝位电容器的平均电压被箝制等于输出电压值V0。
(b)T1-T2
如图4(b)所示,闸级控制信号VGS2于T1被移除。在此一时区间,一次侧输入电压及电感电压总和,跨在变压器一次侧P1绕组,经由变压器二次侧绕组S1,整流二极体D1-D2路径,将大部分的输入功率传送到负载。同时,部分的输入功率也分别对输出电容C0及箝位电容器C1,经由S1-L1-C0-D2-D1-S1和S2-D2-D1-C1-L2-S2路径进行充电。此时,二极体D3-D4,分别因D1-D2的导通,而被箝制于输出电压值V0。
(c)T2-T3
如图4(c)所示,闸级控制信号VGS2于T2加诸于半导体开关元件Q2。因此,半导体开关元件Q1和Q2同时被导通,变压器一次侧两绕组P1-P2因此被短路,导致一次侧输入电压跨在输入电感器Li,处于充电状态,电感电流因而呈线性上升。而在二次侧,因整流二极体D1-D4,无法获得导通的顺向偏压,均呈现关断状态。此时,一半的负载电流由输出电容器C0提供,另一半由箝位电容器C1经由C1(+)-S1-L1-R-S2-L2-C1(-)路径提供。由于箝位电容器能分摊此一时区间所需要的负载电流,输出电容器的电流涟波得以降低为负载电流的一半。因此,得以选用较小数值的输出电容器。另外,因为二次侧绕组极性相反,跨在此二绕组上的电压互相抵消,使得箝位电容器平均电压被箝制于输出电压值V0。
(d)T3-T0
如图4(d)所示,闸级控制信号VGS1于T3被移除。在此一时区间,一次侧输入电压及电感电压总和,跨在变压器一次侧P2绕组,经由变压器二次侧绕组S2,整流二极体D3-D4路径,将大部分的输入功率传送到负载。同时,部分的输入功率也分别对输出电容器C0及箝位电容器C1,经由S1-C1-D3-D4-L1-S1和S2-L2-D3-D4-C0-S2路径进行充电。此时,二极体D1-D2,分别因D3-D4的导通,而被箝制于输出电压值V0。
从前一节的探讨,在半个工作周期内,个别存在一储存能量及传送能量的时区间,Tcharge及Ttransfer各时区间的长短,可以依如下公式求得:
另外从变压器的伏秒平衡,此一电路的电压增益可以导出如下:
其中的工作周期,D,应大于50%,变压器的匝数比也可依下列公式求得:
- 一种大功率可再生能源的应用现状设计和实现(05-19)