优化移动多媒体传输链的功耗
RGB背光驱动器配有一个用户可编程的校准存储器,用来存放各个LED颜色的温度曲线,并以16摄氏度为增量从-40摄氏度到+120摄氏度。另外,在靠近LED处安装了一个温度传感器,这样驱动器便可在宽阔的温度范围内自动维持白平衡,而芯片内12位模拟/数字转换器的第二个输入可用于外部光电二极管,以监测环境的亮度级。此外,主微控制器可通过I2C/SPI接口去访问驱动器的控制寄存器以强制LED的光强度。
一个高效的升压转换器,可以接受2.9V到5.5V的宽范围输入电压范围,并产生一个由5V到20V并以每1V为增量的可编程输出电压。最后,一个自适应模式可通过监测LED驱动器输出和将升压电压降至最低来达到节能效果。
优化音频功率
音频子系统也可能是功率消耗的主角,尤其是对于主要用于听音乐和通话的设备。音频子系统的功率可以通过以下技术得到优化:
扬声器驱动器配置
在所有的音频子系统中,最消耗功率的元件即是扬声器驱动器,这是因为扬声器的工作模式实际上是机械作业。因此,在音频区块中最有可能进行节能的便是这一部分。图7所示为一般的驱动器配置。
图7 扬声器驱动器配置
最简单的方法是采用直流阻隔电容器进行单端式驱动。一个由单电源供电的简单音频驱动器的输出既有交流部分又有直流部分,因此需加插一个电容器以隔离直流部分。由于直流部分未能对产生声音作出任何贡献,那么直流部分的能量就被浪费掉,但是这部分能量还是计算在音频功耗内。在桥接配置中,两侧的扬声器均由相同的直流部分和反极性的交流部分驱动,因此消除了直流偏移。通过扬声器的电压即等于两个输出之差值。而在采用电荷泵的单端驱动中,一个内部接地以下电源可容许输出在接地的中间。图8 所示为所有三种配置下的波形。
图8 扬声器驱动器波形
由一个以单电源供电的简单驱动器所产生的输出将位于直流偏移电压的中间。如果这一偏移未被隔离,它将通过扬声器线圈或耳机线圈,这些线圈的电阻一般在8到32Ω,从而会造成完全短路。可是,采用直流阻隔电容器既增加了成本和尺寸,又降低了低音区的品质。
通过产生两个相位相差180度(反转)的输出信号,桥接配置可用硅片来取代电容器。尽管这两个信号都拥有相对于接地的直流偏移,但是扬声器没有接地,因此,不会产生多余的电流。这一技术的缺点在于它无法与标准的三导体立体声耳机接口兼容,因为当中的接地被两个扬声器分享。
电荷泵方法将一个电容器放回到电路中,但是由于工作频率高,该电容将小于直流阻隔电容。电荷泵容许驱动低于接地的输出,因此输出信号是完全的交流信号。这种配置的优点在于可以与标准的耳机兼容,这是由于两个扬声器都由同一个接地驱动。
Intellisense 输出设备识别
一个多功能便携式设备可支持多种耳机,如用于听音乐的立体声耳机或为接听电话而设的麦克风单声道耳机。Intellisense技术允许其中任意一种耳机插入到同一插孔中,并自动配置设备的驱动器。这样,在设备采用单声道时或者有一个输出短路到接地时,系统便会自动识别出来,避免有多余的功率消耗在驱动立体声的信号上。。
当一个采用Intellisense技术的耳机放大器检测到有一个耳机连接时,它将对左侧和右侧输出施加一个较小的电压,并且感应通过负载所产生的电流。假如连接到放大器的负载大于9Ω,那放大器将采取全功率模式驱动负载。如果负载小于3Ω,那放大器则采取短路到接地,并关闭其驱动器。当右声道被短路时,那Intellisense便会将放大器设于单声道模式。为了提供额外的保护,当左声道都被短路时,那两个放大器都会同时被关闭。Intellisense的开关功能可以通过其I2C接口来激活或关闭。
集成移动设备架构
图9所示由天线到显示器之间的所有芯片之典型功能。连接无线网络的接口一般由一个无线电收发器芯片和一个数字基带芯片组成,但亦可包括一个独立的RF功率放大器。基本上,这通常是由技术提供商给出的即用设计。当中,基带芯片可能包含一个标准的RISC处理器以控制接口,但它也会有一个高阶接口以连接片上系统(SoC),而该片上系统其实就是移动设备的主控制器。
图9 网络和多媒体芯片功能分块图
目前,通信网络并未定义多媒体数据的编码。无论是2.75G、3G或4G网络,数据均仅仅只是比特流。虽然诸如MPEG-4和WMV9之类的标准已描述了如何对音频和视频比特流进行编码,而即使MPEG-4或WMV9的编解码可以通过软件来实现,但这要求相当的计算带宽,从而需要一个快速和耗能大的CPU。因此,最好还是在硬件中执行编解码或者作为高效嵌入式处理器的硬件辅助
- 功率管理优化功率的实现(08-11)
- 功率管理技术介绍(09-26)
- 采用异相功率放大器提高WLAN系统功率效率(01-22)
- 什么是高功率放大器(01-24)
- 功率放大器的使用极限(01-26)
- 封装了硅晶体管裸片的S波段功率放大器(上)(03-01)