微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于数字信号处理器的IGBT驱动电路可靠性分析与设计

基于数字信号处理器的IGBT驱动电路可靠性分析与设计

时间:05-03 来源:21ic 点击:

目前,数字信号处理器芯片供应厂商主要有TI公司、AD公司、Motorolar公司等,本文对交流调速系统中广泛应用的TI公司的TMS320LF2407A与TMS320F240两个产品的PWM口驱动能力进行了比较,从而为设计可靠的驱动电路提供了有力数据。据数据手册可知,长期在绝对最大额定条件下运行将影响器件的可靠性。表1给出F240工作电压绝对额定值以及在推荐工作条件下PWM口驱动输出电流能力。表2给出LF2407A工作电压绝对额定值以及在推荐工作条件下PWM口驱动输出电流能力。

电源电压范围/V -0.3~7
输出高电平/V 3.5 3.0 2.4
输出源电流/mA -13 -18.5 -23
输出低电平/V 0.6 0.4 0.2
输出吸收电流/mA 14.5 10 5
表1 F240驱动输出电流能力

电源电压范围/V -0.3~4.6
PWM口 PWM1~6 PWM7~12
输出高电平/V 2.4 2.4
输出源电流/mA -2 -4
输出低电平/V 0.3 0.3
输出吸收电流/mA 2 4
表2 LF2407A驱动输出电流能力

由表2可以看出,LF2407A两个事件管理器中的PWM口驱动能力不同。同时,比较表1及表2可以看出F240与LF2407A虽然均采用CMOS技术,但是,F240使用5VCMOS电平而LF2407A使用3.3VCMOS电平低压供电方式,因此,PWM口驱动能力不同。为了保证系统可靠性,在设计驱动电路时应充分考虑以上特点。

2.2 F240与LF2407APWM接口驱动设计

微处理器采用不同的集成技术,在设计接口电路时应充分考虑其驱动能力及电平匹配。对于F240,采用5VCMOS技术,直接与TTL电平相兼容,不必考虑一些特殊接口电路。但从可靠性设计角度出发,可在处理器与驱动芯片之间增加隔离驱动芯片,如图2所示。

图2 PWM口驱动框图

LF2407A采用3.3V CMOS技术,该技术使得电路实现了低功耗工作,同时也带来了一些问题,即接口电平匹配与驱动能力问题。图3给出了3.3V CMOS输出到MOSFET的输入接口电路。许多MOSFET在一定的负载电流下要达到饱和导通栅极电平大于3.3V,因此设计中采用标准5V CMOS缓冲器74HC240将3.3V CMOS转换到5VCMOS电平。

图3 3.3V CMOS输出接口电路

3 基于数字信号处理器的驱动方案设计

通过上述分析可知,基于数字信号处理器(DSP)的IGBT驱动电路的可靠性设计,要求充分了解和掌握IGBT和DSP相关的电气特性及可靠性设计的原则。这里采用HP公司的HCPL-316J门极驱动光耦合器结合TMS320F240给出了一种可靠的IGBT驱动方案。

3.1 HCPL-316J特性

HCPL-316J是由HP公司生产的一种2A IGBT门极驱动光耦合器,其内部集成集电极发射极电压欠饱和检测电路及故障状态反馈电路。主要有以下一些特性:

——兼容CMOS/TTL电平;
——光隔离,故障状态反馈;
——开关速度最大500ns;
——"软"IGBT关断;
——VCE欠饱和检测及带滞环欠压锁定保护;
——宽工作电压范围(15~30V);
——用户可配置自动复位、自动关闭。

DSP与该耦合器结合实现IGBT的驱动,使得IGBT VCE欠饱和检测结构紧凑,低成本且易于实现,同时满足了宽范围的安全与调节需要。

3.2 驱动方案设计

目前,各公司推出的用于IGBT驱动的电路各具特色。HP公司的HCPL-316J集成了VCE欠饱和检测及故障状态反馈电路,为驱动电路的可靠工作提供了保障,同时还具有简单易实现的特点。图4给出了基于DSPF240的IGBT驱动方案原理图。

图4 驱动电路原理图

4 结语

本文通过分析IGBT功率器件的特性、对可靠性驱动的要求以及应用于变频器的几种数字信号处理器的PWM口驱动能力,设计了一种可靠的IGBT驱动方案。该方案已在春日变频器驱动电路中得到应用,并取得了很好的效果。随着IGBT的广泛使用,这一方案将具有很好的借鉴意义及应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top