小小一颗IGBT如何撬动电动汽车逆变器?
容,每路电源采用4.7uF X7R汽车级多层陶瓷电容,实现瞬态电压支撑。X7R多层陶瓷电容具有封装小,ESR低,允许纹波电流大,温度降低容量衰减少等优点。
图3:半桥开关电源电路原理图
3 测试结果
实际测试条件为,后级输入定电压16.5V,输入电流0.67A,IGBT开关频率10kHz,信号为SVPWM,开关电源工作频率120kHz,室温条件。经简单计算可知,每路功耗1.84W,与理论计算相符合。
选取高占空比和低占空比两个工况,观察相关信号的波形,见图4和图5。其中橙色的1通道显示低压侧驱动输入信号,粉色2通道显示-8V电源输出端的波形,蓝色3通道显示+15V电源输出端波形,绿色4通道显示门极输出波形。
在IGBT开通时刻,由于电源电容电荷迅速通过门极电阻转移到门极,时间一般只有1~3us,产生+15V电源上的电压跌落,但是很快就可以恢复到平台电压。同理,在IGBT关断时刻,也会使-8V电源产生电压跌落。这种跌落是不会引起IGBT开通或关断的不良反应,因此是可以接受的。对比图4和图5也能够发现,占空比大小不会影响电压跌落的幅值和持续的时间,这是因为IGBT的门极是容性负载。
图4和图5中还能看到,在IGBT关断时刻使开通电压波形产生了一个的尖峰,由于此时开通电压电源处于瞬时空载状态,不会对驱动控制产生影响。整体上看,原边的低压弱电信号和副边的低压强电信号都没有受到开关电源自身开关频率上的干扰。
图4:高占空比波形图
图5:低占空比波形图
4 结论
设计验证表明,前级SEPIC非隔离稳压,后级半桥隔离开环的拓扑结构,优于传统的反激式单原边多副边的集中式电源,特别适合作为100kW量级的新能源乘用车逆变器的驱动电源,设计没有采用往往不符合汽车标准的电源类专用集成芯片,而是采用具有AEC认证的汽车级通用分立器件,满足了乘用车电子设计的苛刻要求。
- 用IGBT代替MOSFET的可行性分析(11-27)
- 以创新的IGBT技术、合理的器件选型和有效的系统手段优化变频器设计(01-09)
- 智能功率IGBT和MOSFET让汽车更加舒适环保(01-09)
- 单电源供电的IGBT驱动电路在铁路辅助电源系统中的应用(01-16)
- 面向汽车应用的IGBT功率模块浅谈(05-13)
- 使用栅极电阻控制IGBT的开关(04-13)