理解超级结技术
基于超级结技术的功率MOSFET已成为高压开关转换器领域的业界规范。它们提供更低的RDS(on),同时具有更少的栅极和和输出电荷,这有助于在任意给定频率下保持更高的效率。在超级结MOSFET出现之前,高压器件的主要设计平台是基于平面技术。但高压下的快速开关会产生AC/DC电源和逆变器方面的挑战。从平面向超级结MOSFET过渡的设计工程师常常为了照顾电磁干扰(EMI)、尖峰电压及噪声考虑而牺牲开关速度。本应用指南将比较两种平台的特征,以便充分理解和使用超级结技术的优点。
为了理解两种技术的差异,我们需要从基础开始。图1a显示了一种传统平面式高压MOSFET的简单结构。平面式MOSFET通常具有高单位芯片面积漏源导通电阻,并伴随相对更高的漏源电阻。使用高单元密度和大管芯尺寸可实现较低的RDS(on)值。但大单元密度和管芯尺寸还伴随高栅极和输出电荷,这会增加开关损耗和成本。另外还存在对于总硅片电阻能够达到多低的限制。器件的总RDS(on)可表示为通道、epi和衬底三个分量之和:
RDS(on) = Rch + Repi + Rsub
图1a – 传统平面式MOSFET结构
图1b – 平面式MOSFET的电阻性元件
图1b显示平面式MOSFET情况下构成RDS(on) 的各个分量。对于低压MOSFET,三个分量是相似的。但随着额定电压增加,外延层需要更厚和更轻掺杂,以阻断高压。额定电压每增加一倍,维持相同的RDS(on)所需的面积就增加为原来的五倍以上。对于额定电压为600 V的MOSFET,超过95%的电阻来自外延层。显然,要想显著减小RDS(on)的值,就需要找到一种对漂移区进行重掺杂的方法,并大幅减小epi电阻。
图2 – 超级结MOSFET结构
图3 – 平面和超级结MOSFET的电压与导通电阻比较
图2显示了基于电荷平衡概念的超级结MOSFET物理结构。漂移区现在有多个P柱,用于消除处于反向偏压下的周围N区中的电荷。因此,Nepi现在可更薄和重掺杂,因为其组合结构可对施加反向电压提供高很多的电阻。由于N区变得更加重掺杂,所以其单位面积导通电阻减小。
图3比较了两种技术的漂移区电场与epi厚度的关系。在传统平面式MOSFET中,阻断电压由epi厚度和掺杂(ND+)定义,或由掺杂线的斜率定义。如果需要额外阻断电压,不仅epi需要更厚,而且epi掺杂线也需要改变。这导致较高电压MOSFEET的RDS(on)不成比例增加。额定电压每增加一倍,在保持相同管芯尺寸条件下,RDS(on)可能增至原来的三至五倍。
对于给定的阻断电压,超级结MOSFET可使用比传统平面式器件(A1 + A3)更薄的epi(A1 + A2)。N区(ND+)的掺杂被P柱(NA-)的掺杂抵消,导致没有斜率。换言之,因为电荷平衡机制,定义阻断电压的只有epi厚度。因此,超级结结构的导通电阻和击穿电压之间存在线性关系。导通电阻随着击穿电压的增加而线性增加。对于相同的击穿电压和管芯尺寸,超级结MOSFET的导通电阻远小于传统平面式器件。
Vishay提供的超级结器件为E系列高压MOSFET,额定电压范围为500 V - 650 V。这些器件提供从小SMT占位面积(如PowerPAK® SO8和PowerPAK 8 x 8)到标准TO-xxx封装的各种封装选项。典型比导通电阻的变化范围为20 mΩ -cm2至10 mΩ-cm2,具体取决于击穿电压和使用哪一代技术。传统平面式MOSFET的导通电阻x 面积之积有三至五倍高,同样取决于额定电压。例如,TO-220封装600 V器件可实现的最低RDS(on)为275 mΩ,而来自Vishay的同样封装超级结器件可低至50 mΩ。当然,对于每一代新的设计平台,将来会提供具有更低RDS(on)的更好器件。
容值
对超级结器件而言,电阻的减小会带来明显的好处,例如在相同RDS(on)下的更低导通损耗或更小管芯。另外,芯片面积的减小会导致更低的容值以及栅极和输出电荷,这可减小动态损耗。在低压沟槽式或平面式MOSFET中,通常需要考虑以更高容值为让步条件来降低RDS(on)。在超级结技术情况下,让步程度是最小的。电荷平衡机制可同时减小RDS(on)和器件容值,使之成为一种双赢解决方案。
表1比较了具有接近RDS(on)值的两种器件的特征。除Eas和Ias外,超级结器件的每个参数均实现15 % - 25 %的改善。这是因为超级结器件虽然RDS(on)只减小了20%,但其管芯尺寸只有平面式器件的三分之一。更小的尺寸会影响额定电流和功率。大管芯尺寸具有更低的电流密度和更好的散热能力。因此,对于给定的导通电阻,传统平面式MOSFET天生比超级结器件更坚固。但在通常用于高压电源转换器的电流和开关频率下,超级结器件始终具有更低的损耗和更高的效率。
- 讨论在PFC中应用的新型超级结MOSFET器件的特点(01-25)
- 区别于传统平面式 一文带你了解超级结MOSFET(07-25)
- 晶体二极管开关转换过程分析(06-26)
- 提升轻负载和高频率下DC/DC的转换效率(07-29)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...