微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 从原理到具体电路,深入剖析MOSFET的工作方式

从原理到具体电路,深入剖析MOSFET的工作方式

时间:07-06 来源:互联网 点击:



3.3关于内建横向电场高压MOSFET发展现状

继INFINEON1988年推出COOLMOS后,2000年初ST推出500V类似于COOLMOS的内部结构,使500V,12A的MOSFET可封装在TO-220管壳内,导通电阻为0.35Ω,低于IRFP450的0.4Ω,电流额定值与IRFP450相近。IXYS也有使用COOLMOS技术的MOSFET.IR公司也推出了SUPPER220,SUPPER247封装的超级MOSFET,额定电流分别为35A,59A,导通电阻分别为0.082Ω,0.045Ω,150℃时导通压降约4.7V.从综合指标看,这些MOSFET均优于常规MOSFET,并不是因为随管芯面积增加,导通电阻就成比例地下降,因此,可以认为,以上的MOSFET一定存在类似横向电场的特殊结构,可以看到,设法降低高压MOSFET的导通压降已经成为现实,并且必将推动高压MOSFET的应用。

3.4 COOLMOS与IGBT的比较

600V、800V耐压的COOLMOS的高温导通压降分别约6V,7.5V,关断损耗降低1/2,总损耗降低1/2以上,使总损耗为常规MOSFET的40%-50%.常规600V耐压MOSFET导通损耗占总损耗约75%,对应相同总损耗超高速IGBT的平衡点达160KHZ,其中开关损耗占约75%.由于COOLMOS的总损耗降到常规MOSFET的40%-50%,对应的IGBT损耗平衡频率将由160KHZ降到约40KHZ,增加了MOSFET在高压中的应用。

从以上讨论可见,新型高压MOSFET使长期困扰高压MOSFET的导通压降高的问题得到解决;可简化整机设计,如散热器件体积可减少到原40%左右;驱动电路、缓冲电路简化;具备抗雪崩击穿能力和抗短路能力;简化保护电路并使整机可靠性得以提高。

4.功率MOSFET驱动电路

功率MOSFET是电压型驱动器件,没有少数载流子的存贮效应,输入阻抗高,因而开关速度可以很高,驱动功率小,电路简单。但功率MOSFET的极间电容较大,输入电容CISS、输出电容COSS和反馈电容CRSS与极间电容的关系可表述为:

功率MOSFET的栅极输入端相当于一个容性网络,它的工作速度与驱动源内阻抗有关。由于CISS的存在,静态时栅极驱动电流几乎为零,但在开通和关断动态过程中,仍需要一定的驱动电流。假定开关管饱和导通需要的栅极电压值为VGS,开关管的开通时间TON包括开通延迟时间TD和上升时间TR两部分。

开关管关断过程中,CISS通过ROFF放电,COSS由RL充电,COSS较大,VDS(T)上升较慢,随着VDS(T)上升较慢,随着VDS(T)的升高COSS迅速减小至接近于零时,VDS(T)再迅速上升。

根据以上对功率MOSFET特性的分析,其驱动通常要求:触发脉冲要具有足够快的上升和下降速度;②开通时以低电阻力栅极电容充电,关断时为栅极提供低电阻放电回路,以提高功率MOSFET的开关速度;③为了使功率MOSFET可靠触发导通,触发脉冲电压应高于管子的开启电压,为了防止误导通,在其截止时应提供负的栅源电压;④功率开关管开关时所需驱动电流为栅极电容的充放电电流,功率管极间电容越大,所需电流越大,即带负载能力越大。

4.1几种MOSFET驱动电路介绍及分析

4.1.1不隔离的互补驱动电路。

图7(a)为常用的小功率驱动电路,简单可靠成本低。适用于不要求隔离的小功率开关设备。图7(b)所示驱动电路开关速度很快,驱动能力强,为防止两个MOSFET管直通,通常串接一个0.5~1Ω小电阻用于限流,该电路适用于不要求隔离的中功率开关设备。这两种电路特点是结构简单。



功率MOSFET属于电压型控制器件,只要栅极和源极之间施加的电压超过其阀值电压就会导通。由于MOSFET存在结电容,关断时其漏源两端电压的突然上升将会通过结电容在栅源两端产生干扰电压。常用的互补驱动电路的关断回路阻抗小,关断速度较快,但它不能提供负压,故抗干扰性较差。为了提高电路的抗干扰性,可在此种驱动电路的基础上增加一级有V1、V2、R组成的电路,产生一个负压,电路原理图如图8所示。



当V1导通时,V2关断,两个MOSFET中的上管的栅、源极放电,下管的栅、源极充电,即上管关断,下管导通,则被驱动的功率管关断;反之V1关断时,V2导通,上管导通,下管关断,使驱动的管子导通。因为上下两个管子的栅、源极通过不同的回路充放电,包含有V2的回路,由于V2会不断退出饱和直至关断,所以对于S1而言导通比关断要慢,对于S2而言导通比关断要快,所以两管发热程度也不完全一样,S1比S2发热严重。

该驱动电路的缺点是需要双电源,且由于R的取值不能过大,否则会使V1深度饱和,影响关断速度,所以R上会有一定的损耗。

4.1.2隔离的驱动电路

(1)正激式驱动电路。电路原理如图9(a)所示,N3为去磁绕组,S2为所驱动的功率管。R2为防止功率管栅极、源极端电压振荡的一个阻尼电阻。因不要求漏感较小,且从速度方面考虑,一般R2较小,故在分析中忽略不计。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top