微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 3GSps超高速ADC系统设计解决方案

3GSps超高速ADC系统设计解决方案

时间:06-24 来源:互联网 点击:

样系统微控制器就能以较慢的速度容易地从中找回这些数据,进行捕获后的处理。

  电路板布局

由于数字开关的瞬时变化主要由高频成分构成,趋肤效应告诉我们逻辑变化产生的噪声几乎与地平面铜皮的总质量无关。总表面积比地平面的总体积更为重要。 典型的充满噪声的数字电路与敏感的模拟电路之间的耦合会导致很差的性能,并且似乎无法隔离和补救。解决这一问题的方法就是要很好地将模拟电路与数字电路分 开。由于所引起的公共回流路径会在ADC的模拟输入"地"中引起涨落,从而在转换结果中引入额外的噪声,因此不应将高功率的数字元件放置在任何线性元件或 模拟与混合信号元件的电源线和电源平面之上或其附近。


通常,我们假定模拟和数字引线应成90°交叉,以避免数字噪声进入模拟路径。但是,在高频系统中应完全避免模拟和数字引线的交叉。输入的时钟线应与所 有其它引线(包括模拟和数字)隔离。应该避免通常可被接受的90°交叉,因为在高频下即使少许耦合也会引起问题。在高频下,笔直的信号路径具有最好的性 能。模拟输入应与充满噪声的信号引线隔离,以避免将寄生信号耦合到输入中去。由于ADC083000要求低电平驱动,因此这一点尤其重要。任何连接在转换 器输入端和地面之间的外部元件(例如滤波电容),都应被连接到模拟地平面中一个非常干净的点上。所有模拟电路(输入放大器、滤波器等)都应与任何数字元件分开放置。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top