微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 运算放大器性能参数的影响因素

运算放大器性能参数的影响因素

时间:11-26 来源:互联网 点击:

电源的微小变化,因此您可能会错误地得出如下结论:电源电压的微小变化在系统中影响极小或者没有影响。作为一个定量举例,我们可对一个全差动运算放大器进行分析,其将信号缓冲至一个24位ADC。

图3显示的是一个使用全差动运算放大器的简化示意图,例如:OPA1632,其配置为一个为24位ADC(例如:ADS1271)提供信号的单位增益缓冲器。该电路是ADC评估电路板的简化示意图。运算放大器由LDO供电,其线压、负载和温度精度为3%。LDO的输出电压针对±15V标称值进行配置。


图3 计算补偿误差影响的示例电路

如果每个LDO的输出电压均恰好各是+15V和–15V,则共模输入电压刚好为0V。就本例而言,如果零伏在其输入上,则我们自ADC读取零计数。那么,电源大小相等而在运算放大器输入上没有信号的情况下,您会从ADC读取零计数。

然而,假设正电压LDO输出增加3%,仍然没有超出LDO规范。使用15V输出时,这3%的变化等同于电源电压从450mV上升到15.45V。根据数据表,运算放大器的典型PSRR为97dB。

方程式2现在可用于计算运算放大器输入的失调电压。在运算放大器输入有一个额外的3.178μV失调电压。由于运算放大器被配置为一个单位增益缓冲器,因此该3.178μV也存在于输出,并施加于ADC。ADC的满量程输入范围为±2.5V,因此每个ADC位相当于298nV。

使用电源产生的补偿电压,ADC现在读取11个计数,而非零计数。电源在读取ADC计数中引入了一个DC补偿误差。该误差会因LDO输出电压而不同,而LDO输出电压又随时间、温度、负载电流和输入电压而变化。这便使得这种误差难以通过校准去除掉,也让ADC的低四位变得不确定。

提高LDO追踪和精度(或者漂移)性能的一种简单方法是将图2所示电路修改为图4所示电路。附加放大器U1和四个电阻需要针对2增益进行配置。额定值条件下,R3和R4之间的节点应为零伏。因此,R1的值必须等于R2,而R3的值必须等于R4。


图4 添加追踪的电路。

图2中,每个LDO的反馈网络都连接至接地。图4中,反馈电阻连接至接地,且由U1的输出驱动。现在,如果任何电源改变其输出电压,则差异出现在U1的非反相输入上,并被增益至原来的2倍。由于U1的输出同时驱动两个LDO反馈网络,因此同时对两个LDO实施校正以强制其输出大小相等。

必须注意图4所示电路。U1的输出可驱动至接近或者等于为U1供电电源轨的电压。如果使用输入源的±18V为U1供电,则输出可驱动至高达18V的电压。该18V输出应用于LDO的反馈引脚,其可能超出其绝对最大电压额定值。我们可以添加钳位二极管,在LDO的高动态负载环境下、短路条件下或者上电期间保护LDO反馈引脚。

图5显示的是加装追踪电路和保护二极管的LDO示意图。为了让示意图更易于理解,U3的每个电源轨的10μF旁路电容器都已脱去不用。


图5 带电压保护的LDO追踪电路

图5所示电路使用一个如TPS7A3001等可调节、负输出电压LDO线性稳压器,以及如TPS7A4901等可调节、正输出电压LDO。U3、R7-R10和C3均为增加的组件,用于追踪。R1、R2、D1-D5均为增加组件,用于将反馈引脚的电压控制在其各自产品说明书额定的绝对最大电压范围内。

所有其他组件一般都是为了支持LDO,例如:输入和输出电容以及反馈电阻。所示LDO可支持±36V范围的输入电压,但由于TLE2141运算放大器的建议电压极限,该电路的输入电压降低至±22V。可以选择更高电压的运算放大器,以覆盖LDO完整的±36V输入范围。

在两种LDO反馈控制方案中,追踪电路都形成了一个附加电压环路。所增加的运算放大器U3的带宽需要由C3降低,以维持系统稳定性。U3带宽需要至少为最低LDO电压环路的1/10。这就意味着U3一般只会有几千赫兹的带宽。因此,它将不会加到系统的高频PSRR。LDO的PSRR主要决定系统的高频PSRR。

总结

本文的讨论明显地说明了DC偏置电源如何影响运算放大器的一些性能参数。使用本文提供的方程式,可实际测得和计算得到这些影响的大小,以确定其在模拟系统中的影响。此外您还可以了解到,添加一些附加组件来为运算放大器构建一个追踪电源可以减少输入补偿电压的多少,可以建立正确序列来减少锁闭问题的发生,还可以提高用于运算放大器DC偏置电源的线性稳压器的整体电压精度。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top