微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > HDTV整合闭环架构与开环架构分析

HDTV整合闭环架构与开环架构分析

时间:08-25 来源:电子发烧友 点击:

闭环音频架构对于高清电视 (HDTV) 的优势已经获得证实,绝大多数模拟输入 D 类放大器业已采用闭环架构。如今随着市场改为采用数字输入放大器 (I2S/PCM 序列 I/F),加上成本、上市时间及性能方面的压力不断增加,闭环架构越来越受注目。本文由高层次的纵观角度探讨闭环架构,说明闭环架构为高清电视( HDTV) 所提供的三个主要优势:更高的阻尼系数、更良好的电源噪声抗扰性及更高的电磁兼容性(EMC)效能。

  纵观闭环架构

  在音频领域中,对于闭环和开环架构的争论已经持续多年。由于终端应用或用户喜好的不同,这两种架构各有其支持论点。在 高清电视(HDTV)领域中,闭环放大器无疑功效最佳。不过,在高端音响领域中,关于这两种架构的争论仍然持续不休。闭环架构的主要优点包括更佳的线性、增益稳定性、更大的带宽,以及更低的输出阻抗,但其中也存在一些缺点,主要包括降低稳定性、降低增益和增加复杂度。

  概念上可以将闭环放大器视为「预失真」(图 1)。反馈网络会将放大器的输出取样,放大器的输出包含扩大的信号,以及放大器或电源供应引入信号的任何非线性失真。输出取样接着会减弱和反相,再与内送的源信号再结合。总和节点 (A 点) 发出的信号是减弱的输入信号,其中已预先加入放大器及电源供应非线性的区域出现反相「预失真」。放大器随后扩大该信号,增加非线性失真。由于源信号经过反馈网络的预失真,因此会产生预失真及失真的抵销作用,进而产生极为线性的信号。这是负反馈的基本优点,这样的机制可用来动态调整系统中的非线性失真。在开环架构中,并不存在这样的机制。因此,放大器线性及电源调节的性能需要较高,一般来说会造成成本增加及/或性能降低。

  图 1:闭环示意图

  阻尼系数的优点

  阻尼系数是喇叭的阻抗与放大器的输出阻抗两者的比例,这表示放大器能够有效开始和停止喇叭圆锥体振动的控制程度,尤其是在较低频率及瞬时期间。高阻尼系数的放大器一般可重现较精准的低音响应。

  闭环放大器的输出阻抗相当低,因此阻尼系数相当高。在闭环系统中,增加电压输出可使反馈补偿放大器的输出电阻电压降低 (输出阻抗的电压降幅愈大,针对总和节点提供的反馈越少,因此输出电压就越大)。增加输出电压的效果等同于减少反馈放大器的输出阻抗 [1]。

  为了进一步了解低输出阻抗如何更有效地控制喇叭,我们需要先了解喇叭的运作方式。假设有三个周期的 80Hz 触发模式信号传导到喇叭的终端,信号传导到终端时,会驱动电流通过发音圈,而产生电动势 (EMF) 使喇叭圆锥体振动。理论上,一旦信号中断,喇叭会立即停止在休止位置。不过,由于在系统中增加了电能,因此必须在喇叭圆锥体停止振动前消耗或减弱电能。喇叭有两种阻尼:1) 透过喇叭悬吊及隔膜空气负载进行的机械式阻尼,以及 2) 透过喇叭磁性进行的电子式阻尼。机械式阻尼的属性与喇叭架构及所用材质有关,而电子式阻尼的属性则直接受到放大器阻尼系数的影响。

  信号中断后,喇叭会开始振动,此时会产生「阻尼」反向电动势( EMF),而使喇叭圆锥体停止振动。此电动势( EMF)会产生电流,经由放大器的输出阻抗从其中一个终端流向另一个终端。阻抗愈小,电流愈大,因此阻尼电动势 (EMF) 就会愈强。概括来说,低输出阻抗可产生较大的反向电动势( EMF)电流,使得振动的阻尼越强。

  图 2 显示以 80Hz 触发模式信号驱动重低音喇叭经过三个周期的闭环放大器 (洋红色) 及开环放大器 (红色)。其中的峰间振幅为 28V,而 80Hz 信号接近重低音喇叭的共振频率。在图 3 中,可清楚看出闭环放大器减弱振动的速度比开环放大器快。除了阻尼较强之外,闭环放大器也能够比开环放大器更快开始喇叭圆锥体振动。

  图 2:80Hz 省电模式的三个周期

  图 3:放大显示阻尼

  供电抑制优点

  根据定义,闭环系统使用反馈来使系统响应不受外部干扰的影响 [2]。开环系统不包含任何反馈机制,若要发挥开环的性能,必须将外部干扰减至最低。

  对于音频放大器而言,其中一个主要的外部干扰来自电源供应。透过电容或使用专属切换式电源供应 (以反馈确保稳定输出电压),即可将干扰减至最低。在 LCD 电视中,不透过无干扰切换式电源供应,而直接以 +12V 或 +24V 背光电源供应驱动音频放大器,即可大幅减少系统成本。

一般是以电源抑制来衡量放大器是否能够抑制电源供应干扰;不过,这种技术无法突显桥接输出配置的闭环系统与开环系统的优点。这种技术将输出接地至放大器,并且在 DC 电源供应上增加频率组件,以调变电源供应。在开环系统中,输入电压与内送的电源供应涟波相互

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top